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Abstract

This work involves the development of a vision-based system for measuring the size distribution

of rocks on a conveyor belt. The system has applications in automatic control and optimization

of milling machines, and the selection of optimal blasting methods in the mining industry. Rock

size is initially assumed to be the projected rock surface area due to the constraint imposed by

the 2D nature of images. This measurement is facilitated by locating connected rock-edge

pixels.

Rock edge detection is achieved using a watershed-based segmentation process. This process

involves image pre-filtering with edge preserving filters at various degrees of filtering. The

output of each filtering stage is retained and marker-driven watersheds are applied on each

output resulting to traces of detected rock boundaries. Watershed boundary selection is then

applied to select boundaries which are most likely to be rock edges based on rock features.

Finally, rock recognition using feature classification is applied to remove non-rock watershed

boundaries.

The projected rock area distribution of a test-set is measured and compared to corresponding

projected areas of manually segmented images. The obtained distributions are found to be

similar with an RMS error of 2.37% on the test-set. Finally, sieve data is collected in the

form of actual rock size distributions and a quantitative comparison between the actual and

machine measured distributions is performed. The overall quantitative result is that the two

rock size distributions are significantly different. However, after incorporating a stereology-

based correction, hypothesis tests on a 3m belt-cut test-set show that the obtained distributions

are similar.
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Chapter 1

Introduction

1.1 Problem statement

There is a need for an instrument that automatically measures the size distribution of rocks on

a conveyor belt in the mineral processing and blast fragmentation industries. In mineral pro-

cessing, the output of such an instrument can be used to adjust milling parameters for optimum

crushing performance, while in blast fragmentation it can be used to evaluate the effectiveness

of blasting procedures [50].

In the mineral processing industry, sieving methods are perceived as the most accurate means

of measuring rock-size distributions because each particle in the sample is measured. However,

for an accurate and representative measurement of the overall plant ore size distribution, long

belt-cuts1 have to be taken. This is an undesirable situation because it affects production. As

a result, plant managers are very reluctant to perform these long belt-cuts and instead opt for

short belt-cuts. The problem with short belt-cuts is that they do not capture the overall ore-size

distribution variability of the plant, and as a consequence the milling parameters thus obtained

may not improve milling performance significantly, if at all. Therefore an automated solution is

highly needed in this industry. In blast fragmentation analysis, sieving methods are not viable

as extremely large rock fragments are produced. Thus there is no alternative solution in this

application.

1Belt-cut is a term used in the comminution work which refers to the amount of the material to be sieved in

terms of conveyor-belt length.
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An automated rock-size measurement system should meet the following requirements:

• The measurement should be non-intrusive so that there is no wear and tear of mechanical

parts and no degradation of materials under measurement.

• Measurements should be performed in near real time to facilitate quick adjustments of

process parameters for control purposes.

• The instrument should be able to withstand the harsh conditions of a mineral processing

plant.

• Production should not be affected by the operation or failure of the instrument.

1.2 Background

In the mineral processing industry, valuable minerals such as gold and platinum are extracted

using high electricity consumption machines during comminution [11]. In the comminution

stage, milling machines crush ore to a desired particle size for the liberation of the valuable

mineral in the subsequent stages of the mineral extraction process [65]. In the absence of any

form of mill control, the product size particles will either be ground to an unnecessary degree or

the mill discharge will be too coarse due to inadequate residence-time2 in the mill [65]. Both

conditions are undesirable: the former is expensive due to excessively high electrical energy

consumption, while the latter has too low a degree of liberation for separation and results in

poor recovery in the concentration stage. Therefore some form of mill control is needed to keep

the mill discharge particle size at a desired set-point.

There are two common types of mills in the mineral processing industry namely autogenous

(AG) and semi-autogenous (SAG) mills [65]. The AG mill grinds ore using the ore itself while

the SAG uses steel rods or balls as grinding media in addition to the ore itself. It is understood

that both types of mills require certain rock size distribution profiles for proper operation [65].

After the detection of an improper size distribution profile, rock selection procedures can be

2Residence-time is a term used in comminution which refers to the time interval from the entrance of the

material into the mill until it is discharged.
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used for correction purposes [38]. The instrument can also be used for monitoring the input

and output size distributions of systems such as crushers. Alternatively, the instrument can be

incorporated as part of the mill control system, where the rock size distribution is a control

variable to compensate the milling action for various input rock size distributions. This forms

the main motivation for undertaking this research.

This dissertation proposes a machine vision-based solution to the rock size distribution mea-

surement problem. This approach uses tools from machine vision to analyze scenes of rocks

on a conveyor belt in order to facilitate the measurement of rock-size. This approach has been

adopted by other researchers such as Crida[11] and Lange[38]. However, due to the limita-

tions of computer hardware at the time, the complexity of the image analysis procedures was

highly restricted. Most of the engineering was based on striking a compromise between speed

and accuracy, with the accuracy component suffering most of the time. The complexity of the

solutions were highly limited resulting in poor accuracies.

Nowadays recent developments in computer hardware have resulted in huge improvements in

computing power and speed. This has led to the development of commercial machine vision-

based rock-sizing instruments such as Split-engineering and Wipfrag [62, 63]. These systems

have attracted great attention in the mineral processing and blasting industries where manual

sizing procedures are not viable options. The long-term objective is to optimize the system

implemented in this work to form a robust commercial rock-sizer product that can compete

with these commercial rock-sizers.

1.3 Thesis objectives

Based on the above problem statement and background, this dissertation aims at developing a

machine vision-based instrument for measuring the size distribution of rocks on conveyor-belt.

The objectives of this work are to:

• Review machine vision in general, and specifically review previous work on the develop-

ment of rock-sizing instruments using machine vision.

• Investigate image processing techniques that can be used as building blocks.
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• Investigate the use of pattern recognition tools for rock recognition.

• Outline the implementation of the adopted segmentation approach.

• Implement various pattern classification approaches and compare them on the collected

data.

• Empirically convert the 2D rock size distribution of sections to a 3D rock size distribution.

• Test the system on ”real world” plant data and quantify its performance.

• Finally, draw conclusions and make recommendations

1.4 Thesis Format

The following is the format of this thesis document.

Chapter Two: Presents a literature review of Machine vision by introducing its main building

blocks namely illumination control, digital image processing and object recognition. Finally,

previous work on measuring rock size distributions using machine vision is presented.

Chapter three: Presents the theory behind a selected set of traditional digital image processing

procedures and investigates their possible application to rock scene segmentation. In particular,

the techniques under investigation can be broadly categorized into gray scale image thresholding

and edge detection.

Chapter four: Investigates image de-noising methods. The selected set of approaches is di-

vided into linear and nonlinear filtering methods. A qualitative comparison is carried out and

the suitable approaches for rock-scene filtering are selected.

Chapter five: Investigates the use of mathematical morphology tools for the segmentation of

rock scenes. The theory underlying the basic and advanced tools is presented. Finally, the

most powerful tools in the form of the reconstruction operator and the watershed transform are

investigated.
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Chapter six: Presents the implementation details of the adopted rock scene segmentation ap-

proach. It is divided into preprocessing for estimating rock locations and rock edge tracing with

a watershed-based segmentation approach. The implemented algorithm is tested for robustness

to varying lighting conditions.

Chapter seven: Presents the background theory of a selected set of pattern recognition tech-

niques. The set of classifiers under investigation includes k-nearest neighbor (KNN), the prob-

abilistic neural network (PNN), regularized least squares classification (RLSC) and support

vector machines (SVM) in the form of the kernel adatron. Feature vector dimensionality reduc-

tion methods are investigated for improving class separability in the input feature space. Data

acquisition, feature measurement and classifier training for rock recognition are carried out.

Finally, the classifiers are tested for generalization and the test results are presented.

Chapter eight: Presents the overall results of the dissertation. The rock size distributions are

measured and compared to sieved data. A stereology-based ”unfolding” method for obtaining

a 3D rock size distribution from 2D size distributions of sections is used to correct for obvious

errors. The performance of the modified system is evaluated on a 3m belt-cut test-data.

Chapter nine: Draws conclusions based on the results of the dissertation and makes recom-

mendations for future developments.
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Relevant literature review

2.1 Introduction

Machine Vision is probably the most suitable solution for the the rock-size distribution mea-

surement problem simply because it has many attractive advantages. In [11], the following

advantages are stated:

• A non-intrusive measurement is performed on-line without stopping the conveyor belt

and disturbing the feed to the mill.

• The instrument takes measurements continuously for 24 hours a day.

• The obtained results are consistent given the same scene with the same lighting condi-

tions.

• There are no moving mechanical parts and thus reduced maintenance.

Even though these advantages are valid enough to justify the use of this approach, two ma-

jor disadvantages are revealed in the literature. The first one is that only a two dimensional

(2D) view of the scene is available. Thus the actual size distribution of the material cannot be

measured, due to ”fragment overlap” and occlusion of material underneath the surface of the

stream. The second is that due to the camera’s limited resolution, rock sizes below a certain

threshold cannot be measured. The details of other ”inherent sources of error” are provided in

[43]. However there is a consensus in the field of machine vision for rock-size measurement

that a useful measure of the actual distribution can be obtained [38].
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In this chapter, a review of the literature on machine vision in general is given in section 2.2.

This is followed by previous work on the measurement of rock size distribution using machine

vision in section 2.3.

2.2 Machine Vision

Shapiro and Haralik define machine vision as a science that develops algorithms for automat-

ically extracting and analyzing useful information from observed images using a computer

[26, 27]. A typical machine vision system consists of a controlled illumination arrangement, a

video camera and a personal computer with a grabber card. The camera captures the scene and

transforms it to an analog video signal which is then fed to a frame grabber card for the con-

struction of the final digital image [18]. The overall physical set up is shown in figure 1. It has

been identified in [11] that a typical machine vision system executes the following processes in

the specified order:

• Image capture and enhancement

• Segmentation

• Feature extraction

• Matching features to models

• Exploitation of constraints and image cues to recover information lost during image pro-

cessing, and

• Application of domain knowledge to recognize objects in the scene and their attributes.

Except for image capture, most of the processes are executed in software.This implies that the

design of suitable lighting conditions is not incorporated into this approach. However from

intuition, and from previous work on the effect of lighting on machine vision systems[19, 17,

25, 18], it is clear that the design of a suitable lighting arrangement should be incorporated as

part of the system. In general, the lighting arrangement should emphasize features which are

important to the segmentation and subsequent recognition of objects of interest.
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Figure 2.1: A Typical Machine vision system for rock sizing

In the next sections an introduction to the major building blocks of a machine vision system is

given in the form of controlled illumination, digital image processing and pattern classification.

2.2.1 Controlled illumination

The appearance of objects in images is due to the reflectance properties of objects under imag-

ing. For there to be reflection there should incident illumination. During the image formation

process, the reflection of light on the object’s surface (radiance) is captured by the light sensors

of the camera. In a charge-coupled device (CCD) camera, the light sensors form a rectangular

grid of electron collection sites [18]. Each site has three layers: the thin silicon wafer, on top of

which is the layer of silicon dioxide, and finally the conductive gate structure deposited on the

dioxide [18]. The light energy falling on each collection site is measured. The measured light is

then converted to an analog voltage which is sampled and digitized for computer representation.
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The brightness intensity at a point in an image depends on the characteristics of object’s re-

flectance and the geometry of the imaging process [1]. The gray-level is perceived as a quan-

tized measurement of image irradiance and is proportional to scene radiance. It is further stated

that the gray-levelf at an image point, is proportional to the scene irradiance E (the amount of

light incident on the objects) and the reflectance r at the corresponding world pointx. It is given

by:

f (x) = E(x)r(x). (2.1)

The irradiance E atx is the sum of the contributions from all the light sources, while the re-

flectancer is the portion of the irradiance that is reflected toward the camera [1]. The scene

irradiance E has a low spatial variation across the image, while the reflectance component varies

with surface orientation and thus changes quickly at the object edges [1]. It is apparent that the

scene irradiance is the so called ”Background illumination”. An attempt to remove it is usually

performed during digital image processing by a filtering operation, which models the structure

of the background illumination and subtracts it from the acquired image.

In summary, there is a strong link between the captured image and the illumination conditions

under which it was taken. This relationship is exploited whenever possible in machine vision

applications [19, 25, 17, 18]. As far as the the application of measuring rock size distributions

is concerned, the illumination arrangement should enforce the appearance of shadows around

each rock in the scene to facilitate rock edge detection.

2.2.2 Digital image processing

Once the image is acquired in digital form, it is processed using digital image processing rou-

tines with the final goal of image segmentation. The initial processing is usually a filtering

operation to reduce the noise which is introduced by the image formation process. This process

is noisy due to sampling, quantization and random disturbances in the capture hardware. Fil-

tering has its own associated degradations such as blurring the edges of objects. At this point

the filtered image is then segmented into disjoint regions using a possible combination of edge

detectors, thresholding techniques, morphological operations and other image processing trans-

forms. This form of processing can be classified as low-level processing where the objects of

interest are revealed. There is no object recognition or feature-based classification of regions.
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The reader is referred to [31, 8, 58, 21] for digital image processing concepts, algorithms and

applications.

Digital image processing of rock-scenes aims at revealing objects of interest which are rocks in

this application. The key assumption is that of a controlled illumination set up, where shadows

form rings around rocks at this stage.

2.2.3 Pattern recognition

The purpose of pattern recognition in this work is to distinguish between the segmented regions

that represent the object of interest and those that do not. The classification is based on region

properties or features, such as shape, texture, edge and regional gray value characteristics. Each

region is viewed as a point in an N-dimensional feature vector space where N is the number of

properties. Neighboring points are expected to be similar and thus form a cluster with the same

class label.

In supervised learning, the training data is labelled and a functional mapping is learned which

maps the measured properties to the labels. In unsupervised learning the training data is not

labelled. Instead clustering algorithms are used to partition the feature vector space into a

number of clusters and a new test point is assigned to a cluster closest to it. In the case of

supervised learning, the system is tested for generalization so that it responds well to unseen

data (data which is not in the training set). There are many ways of obtaining this mapping and

this distinguishes the various classifiers. The reader is referred to [10, 55, 12, 53] for concepts,

algorithms and applications of pattern recognition techniques.

The next section presents previous work on measuring the size distribution of rocks.

2.3 Previous work on Machine vision for rock-sizing

The quantification of rock fragmentation is not a new problem and this is evidenced by the

amount of publication on the matter [62, 63, 38, 11, 4, 16, 46, 36, 54, 64, 32, 14, 37, 22]. The

work on particle sizing using machine vision ranges in time from 1976 to 2004. It began in

the mid seventies with the ARMCO Autometrics MSD-95 material size distribution transmitter
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[32]. This instrument was developed at the Julius Kruttschnitt Institute of Australia and later

manufactured by ARMCO. Its operation involves using 1-D signal processing methods to de-

termine rock chord lengths. This is achieved by scanning the conveyor belt along a straight

line parallel to and at the center of the belt using an optical sensor. Shadows and gaps between

rocks are emphasized by a low incident lighting arrangement. This results in the output of the

optical sensor being a 1-D signal which assumes high values in the presence of a rock and low

values in a shadow region. This output is then compared to a threshold such that higher outputs

are deemed to be rocks. The threshold comparator output is a series of pulses whose durations

are the times it took the optical signal to stay above the threshold. These durations are mea-

sured and knowing the speed of the conveyor belt, the rock chord lengths are determined. Even

though this system is fast enough to operate on-line in real-time, it has obvious limitations. The

list of limitations includes: Ignoring rocks which are outside the probe line resulting in a bias

in the measurement, the measured chord-lengths are not representative of the measured rocks

resulting in a bias to smaller particles, the use of absolute intensity for rock detection may not

be appropriate for different colors of ore and may therefore result to inaccurate chord lengths,

and finally low intensity values do not necessarily represent gaps or shadows between rocks.

In this section machine vision approaches to rock size measurement from selected academic

and commercial institutions are presented. These approaches were developed between the years

1990 and 2004.

2.3.1 The University of Witwatersrand

In this institution, Lange [38] developed a machine vision system for the measurement of rock

size distributions in 1990 as part of his PhD research. His system involves a sequence of opera-

tions which commences with image low pass filtering using a neighborhood averaging filter to

remove impulse noise. At this point the filtered image is processed in parallel by 2 processes:

the first is a morphological gradient operation followed by thresholding for rock edge detection,

the second is a process which computes 2 thresholds from the histogram of the image. The

higher threshold highlights bright intensities and the lower highlights darker areas.

The information contained in the resultant set of images consists of detected edges, bright and

dark areas. These images are combined to correct the edge detection image. The output of
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this correction stage is the final segmented image. Measured cord-lengths of the closed regions

are then used to estimate the sieve size distribution of the material on the conveyor belt. The

conclusion is that the accuracy of the system is limited by the inaccuracy of the thresholding

and edge detection processes, in addition to the conversion from 1-D to 3-D distributions of the

chord-length measurements.

2.3.2 The University of Cape Town

Crida [11] developed a machine vision system for rock fragmentation in 1995 as part of his PhD

research. He adopted a diffuse lighting arrangement where the response to specular reflection

is low, and shadows separate rocks lying close together. The image processing is based on the

Human Visual System (HVS) in that it has a pre-attentive stage and incorporates an attention

focus stage.

The processing begins with the generation of a multi-scale pyramid, where the image is filtered

with varying degrees to produce n-filtered images. The top image of the stack is the least filtered

and has the largest size, while the highly filtered image at the bottom has the smallest size. Rock

edges are highlighted using adaptive thresholding to obtain rock outlines. Elliptically shaped

outlines are detected on each image in the scale-space using the Hough transform.

Spurious ellipses are detected by comparing the shape of each ellipse to a corresponding outline

on the thresholded image and are subsequently eliminated. These ellipses encode expected size,

position and shape of rocks. This is followed by attention focusing, comprised of rock edge

tracing followed by region classification for removing false alarms. The rock edge tracing step

is guided by the knowledge encoded in the ellipses to determine rock-edge pixels. Finally, the

potential rock regions on each scale-space image are combined using a hierarchical procedure

to select regions which are most likely to represent rocks.

No attempt is made to estimate a 3D rock-size distribution. Instead, the system performance

is quantified by comparison to manually segmented data. The amount of fines1 in the image

1Fines are very small particles which are typically less than a millimeter in diameter. However, in this work,

fines are regarded as the particles that cannot be measured by the system, due to limited resolution.
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are not estimated. In addition, the system tends to split large non-elliptical rocks due to its bias

towards detecting elliptical rocks.

2.3.3 The Wipfrag commercial system

Wipfrag is a commercially available machine vision system for measuring rock fragmentation

for the milling and blast fragmentation industries [42]. It was developed by Franklin and Maerz

in collaboration with the University of Waterloo and industrial groups from the blasting, mining

and mineral processing industries. The inner workings of the image analysis have not been

revealed in their publications.

The following publications address issues related to the workings of their image-based granu-

lometry system: mapping from 2-D distributions of rock sections to 3-D rock-size distributions

using stereology and geometric probability principles [40]; inherent sources of error of optical

digital fragmentation measuring systems [43]; case studies using the Wipfrag system [51]; im-

age sampling techniques [39]; system calibration [44]; online fragmentation analysis [42]; and

aggregate sizing and shape determination [41].

In [40], it is discovered that many of the underlying assumptions of stereology and apriori

knowledge of geometry probabilities are violated. In response to this, a new method of un-

folding a 3D distribution from a 2D size distribution of sections is proposed. The transform

function involves an empirical calibration to compensate for missing fines and overlapping hid-

den particles. The main drawback of this approach is the assumption that rocks are spherical

particles.

2.3.4 The commercial Split-Online system

The Split-Online machine vision system was made available for commercial purposes in 1997

after eight years of research [62]. It was initially developed at the Department of Mining and

Geological Engineering, University of Arizona. This is currently the state-of-art in the field

of rock fragmentation quantification [62]. Their image analysis processes are not revealed in

detail. From [62] it appears that some form of pre-processing is followed by an automatic
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thresholding procedure to prepare the image for delineation. This consists of 4 steps: gradient

filter, shadow convexity analysis, split algorithm and watershed algorithm.

The output of their watershed algorithm is a binary image where black areas denote fines and

the white areas represent rocks. At this point, user intervention is required to correct for the

inaccuracies of the system due to poor lighting, quality of the image, etc. Since the information

on the inner workings is not supplied, its successes and failures cannot be provided.

2.4 Summary

This chapter presented a literature review of machine vision in general, and in particular pro-

vided descriptions of its fundamental components. Images of an illuminated scene are captured,

processed by a desktop computer using image processing tools to reveal objects and further pro-

cessed to recognize objects of interest.

Previous work on the development of a vision-based rock-sizing machine is presented. It must

be stated that the list is not exhaustive but rather presents systems from both academic and

commercial perspectives. However, commercial institutions tend to reveal little information

about the inner workings of their systems and as a result a proper review of their methods is not

possible.

In closing, the unifying theme is that machine vision in general involves illumination control

for enhancing particular object features, digital image processing for extracting such objects,

and finally some form of feature-based classification for object recognition.
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Traditional Image Processing

3.1 Introduction

Digital image processing involves the development of computer algorithms for image analysis

and the subsequent extraction of the objects of interest [8]. The core processes are usually

image enhancement and segmentation. In this work, digital image processing is divided into

traditional and morphological image processing. Traditional image processing techniques are

regarded as the very old techniques which are commonly used in the image processing field.

This chapter is concerned with the provision of theoretical background of traditional image

processing techniques that can be used as the building blocks of the rock-scene segmentation

algorithm.

An image is considered as a continuous 2D functionf (x,y) where x and y are the horizontal

and vertical spatial displacements. A digital image is a sampled and quantized version of the

continuousf (x,y). This digital image is then stored on computer memory as a 2D array of

picture elements or pixels. Figure 3.1 shows an example of a digital image in the form of a

scene of rocks on a moving conveyor belt.

The scene consists of fines and rocks of various sizes, brightness values and surface textures.

The smaller rocks appear to have the same brightness as that of fines. These were pre-classified

as fines by a grizzle1 for storage purposes [38] before being loaded on the conveyor. The

image is taken from a video sequence of frames taken during a sieving test-work exercise at the

Waterfall plant in Rustenberg.

1A grizzle is a form of screen or sieve which is used to allow rocks of certain size to pass through.
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Figure 3.1: A scene of rocks on a conveyor belt

The main objective of the image processing in this context is to extract rock edges to facilitate

the measurement of enclosed areas as rock size. As means of achieving this objective, two main

approaches in the form of edge detection and grey-scale thresholding are investigated. This

chapter is mainly divided into two sections, a background theory on gray level thresholding

techniques is given in 3.2 and edge detection techniques in 3.3.

3.2 Gray level Thresholding

Thresholding is the simplest form of image segmentation where gray value thresholds are se-

lected for discriminating between two or more classes of gray-levels in an image [11]. The

simplest case is bi-level thresholding where a single threshold is selected for discriminating

between two classes of gray-levels. The threshold is usually chosen from the gray value dis-

tribution or histogram of the image. These methods are called image histogram dependent

threshold selection methods in the literature.

Most of the techniques, such as Tsai’s moment preserving and Otsu’s discriminant analysis

methods assume that the histogram of the image is bimodal and attempt to extract a gray

value with the minimum frequency count between the two peaks as the threshold [34]. The

underlying assumption is that the background and the foreground gray values are generated

from two different gaussian distributions resulting in a clear distinction between foreground

and background[34]. However, this assumption does not always hold, particularly for complex

16



Chapter 3: Traditional Image Processing

scenes such as a scene of rock assemblages which tend to have rocks with similar gray values

as the fines.

The rock-scene image of figure 3.1 is a particular example where global thresholding is not

expected to be successful, due to most of the rocks appearing to have approximately the same

brightness as the fines. As a consequence the resultant rock-scene segmentation is inaccurate

as shown in figure 3.2. In this figure, the threshold is manually tuned to be the gray value at the

local minimum between the two peaks. An ideal case is the situation where one peak represents

the shadow regions and the other represents the rocks; a threshold in the middle would then

result in a good segmentation output where rocks are revealed.

Figure 3.2: A scene of rocks on a conveyor belt, its corresponding histogram with a manually

selected threshold of 107 and the resultant binary image. It can be seen that selecting

the optimal value of T as the minimum gray-level between the 2 peaks does not reveal

all the rocks in the image

From here onwards, background theory on various thresholding techniques is presented.
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3.2.1 Moment Preserving technique

The moment preserving threshold technique was developed by Tsai [11] for selecting an opti-

mal threshold given an input image. It uses the first four moments of a gray-level probability

distribution namely the area, mean, variance and skewness. For Bi-level thresholding it as-

sumes that the gray-level probability distribution of an image is bimodal where the two mean

gray-levels of the foreground and background, and the threshold T are estimated using the fol-

lowing procedure: A gray-level probability distribution is computed from the image histogram

using

Pj =
n j

N
(3.1)

wheren j is the frequency count of pixels with gray-level j, N is the total number of image pixels

and j ranges from 0 to 255 gray-levels. The first 4 moments are then computed using

mi =
255

∑
j=0

j iPj (3.2)

wheremi is the ith moment with i ranging from 0 to 3. This technique requires that these

moments be preserved after thresholding. In a bi-level thresholding case, a single threshold T

is used to classify two classes with mean gray-levelsw0 andw1. The first four moments of the

resultant binary image are given by

m′
i =

1

∑
k=0

wi
kpk (3.3)

Herep0 is the fraction of gray-levels below T,p1 is the fraction above T andi runs from 0 to 3.

Equating (3.2) and (3.3) produces four equations which are called moment preserving equations

for bi-level thresholding[11]:

p0 + p1 = 1 (3.4)

p0w0 + p1w1 = m1 (3.5)

p0w2
0 + p1w2

1 = m2 (3.6)

p0w3
0 + p1w3

1 = m3. (3.7)
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The fraction of gray-levels less than the threshold T is given by

p0 =
T

∑
j=0

Pj . (3.8)

The solution of the moment preserving equations determines the value ofp0, which is then

used in equation (3.8) to determine the threshold T. The details of the procedure for solving the

moment preserving equations is outlined in [11]. Applying this technique to the image under

analysis we get the following variables of interest from the solution of the moment preserving

equations.

Table 3.1: Variables of interest of the moment preserving technique

variable value

T 112

w0 78.2

w1 143.3

p0 0.74

m1 95

Figure 3.3: Moment preserving threshold output. The threshold is determined to be 112. The

background and foreground mean gray-levels are found to be 78 and 143 respectively.
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The results show that a global threshold determined from the moment preserving technique does

not reveal most of the rocks. A global threshold of 112 is higher than the manually selected

value of 107 and thus reveals rocks even less than before. The image under analysis has rocks

which appear to be covered by fines, and these are the rocks which are not detected.

3.2.2 Discriminant Analysis technique

Otsu proposed a threshold selection method which determines the gray-level threshold using

discriminant analysis theory [34]. The following mathematical formulation of this technique is

obtained from [34].

As in the moment preserving technique discussed in the subsection 3.1, the gray-level histogram

is normalized and regarded as a gray-level probability distribution using equation 3.2.1. For

Bi-level thresholding the image pixels are classified into two classesC0 andC1, where the

probabilities of class occurrencesω0 andω1 are determined from

ω0 =
T

∑
i=0

pi . (3.9)

ω1 =
255

∑
i=T+1

pi (3.10)

The class meansµ0 andµ1 are defined as:

µ0 =
T

∑
i=0

ipi

ω0
=

µ(T)
ω(T)

(3.11)

and

µ1 =
255

∑
i=T+1

ipi

ω1
=

µtot−µ(T)
1−ω(T)

(3.12)

where

ω(T) =
T

∑
i=0

pi (3.13)

µ(T) =
T

∑
i=0

ipi (3.14)

and

µtot =
255

∑
i=0

ipi = ω0µ0 +ω1µ1 (3.15)
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The between-class variation or class separation is then computed as:

σ2
B = ω0(µ0−µtot)2 +ω1(µ1−µtot)2 (3.16)

which is then written in terms of T-values as:

σ2
B =

[µtotω(T)−µ(T)]2

ω(T)[1−ω(T)]
(3.17)

An optimal threshold value is determined by maximizing the between-class varianceσ2
B to

obtainTopt:

Topt = max05T5255[σ2
B(T)] (3.18)

The result of applying this technique is shown in figure 3.4.

Figure 3.4: A Binary rock scene obtained using Otsu’s method with an optimal threshold value

of 106.5 and its corresponding histogram plot shown with the between-class variance

on the same set of axes

The results show that a global threshold value determined from the discriminant analysis tech-

nique does not reveal all of the rocks. The global threshold obtained is 106.5 and thus the same

rocks are revealed as for the manual procedure.

3.2.3 Adaptive thresholding

In order to extract regions of varying brightness and contrast, an adaptive gray level threshold

which varies depending on pixel neighborhood statistics is desirable. The simplest and most
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widely used statistic is the mean or the moving average. Other variants include the adaptive

gaussian thresholding, where the weights decay as a gaussian function of the distance from the

kernel center [30].

Adaptive mean thresholding

This form of thresholding is implemented by firstly highly smoothing the image with a large

uniform or moving average filter, and using the blurred image for thresholding the original.

The sliding neighborhood kernel has equal weights that sum to unity and its shape is square.

Each pixel intensity in the smoothed image is computed as the weighted average gray level

of the pixels within the sliding neighborhood on the input imageI(x,y) using the convolution

operation

Is(x,y) = I ∗K = ∑
i

∑
j

I(i, j)K(x− i,y− j). (3.19)

Here Is(x,y) is the smoothed image andK(x,y) is a p by p normalized mask with p being an

odd integer. The original image is thresholded withIs as the adaptive threshold, and the output

is the binary image B where for all indicesi and j:

B(i, j) = 1 if I(i, j) > Is(i, j) (3.20)

and

B(i, j) = 0 if I(i, j)≤ Is(i, j) (3.21)

Results after applying this scheme to the rock scene image under analysis are shown in figure

3.5.

It appears that small kernel window sizes detect small structures, such as small rocks and fines

at the expense of large rocks being split and noise detected. On the other hand, larger window

sizes reveal big rocks with high success at the expense of smaller structures being missed.
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Figure 3.5: Adaptive mean thresholding outputs with kernel window sizes of 15x15 and 31x31 at

the top from left to right and kernel window sizes of 75x75 and 91x91 at the bottom

from left to right

3.2.4 The two-window adaptive thresholding technique

It is of utmost importance that all the rock sizes within the image are detected. In this work,

a two window adaptive thresholding technique is implemented based on this requirement. It

uses the observation pointed in previous subsection, namely small kernel window sizes tend to

detect small rocks while larger window sizes detect larger rock sizes.

Depending on the size of the image under analysis, two windows of sizesw1 andw2 are selected.

Two successive adaptive thresholding processes are applied on the input resulting to two binary

images. A logical OR operator is then used to combine the two binary outputs to improve the

connectivity of detected pixels. The final output of applying this technique to the image under

analysis is shown in figure 3.6. The window sizes of 25x25 and 95x95 were used.
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Figure 3.6: The output of the two-window adaptive thresholding technique

3.3 Edge detection

Edge detection is required in this application to trace the edge of each rock in the image so

that the areas of the enclosed regions can be accurately measured. It is one of the oldest seg-

mentation techniques in computer vision, together with greyscale thresholding[13]. However,

it is expected to produce more accurate results than thresholding in this application due to the

variations in gray levels across surfaces inhibiting the success the thresholding approach. Edge

detection involves detecting gray level discontinuities in an image with the aim of revealing

objects of interest.

There are two types of edge detectors and these are template matching and differential gradient

or Laplacian techniques [1]. Differential gradient operators use two masks to detect edges in

the vertical and horizontal directions. On the other hand, the template matching approach can

use up to 12 masks for detecting edges in various directions [13]. This work only investigates

the differential gradient techniques due their simplicity and easy implementation. The original

imageI(x,y) is convolved with masksKi(x,y) which detect edges in the horizontal and vertical

directions. The outputsOi(x,y) are combined via some functionG to obtain the edge detection

map.

Oi(x,y) = I(x,y)∗Ki(x,y) (3.22)

O = G(O1,O2) (3.23)
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A commonly used combining operator is the rms (root mean square) operator defined as:

O =
√

O2
1 +O2

2. (3.24)

It is common practice to threshold the edge strength map so that the strongest edges are detected

and the noise is suppressed. The noise is a result of the noise enhancing property of a derivative

giving rise to the detected edges being accompanied by spots. Edge detector outputs are not

thresholded in this work since the actual edge strength is required by the watershed transform

which is described in chapter 5. This section provides descriptions of different edge detectors

and investigates their application to rock fragmentation images.

3.3.1 The simple gradient operator

Horizontally and vertically adjacent pixels are subtracted and divided by the pixel spacing to

approximate the gradient. The two outputs are combined using the rms operator. Let the original

image beI(x,y) then the vertical component of the gradient is given by:

Gv(i, j) = I(i, j)− I(i, j−1) (3.25)

and the horizontal component is:

Gh(i, j) = I(i, j)− I(i−1, j) (3.26)

Then the rms operator produces

G =
√

G2
v +G2

h (3.27)

Figure 3.7 shows the output after applying the gradient operator on the image under analysis.

The output appears to be noisy particularly on rock surfaces. Ideally, high responses are desired

at the boundary and not on the surfaces. A suitable pre-filter should reduce the effect of noise

and rock texture.
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Figure 3.7: The simple gradient operator output

3.3.2 The Sobel operator

The Sobel operator computes the derivative of the image using the sobel approximation to the

derivative as shown in the two masks below. Partial derivatives in the horizontal and vertical

directions are approximated by weighted pixel differences in the respective directions. Neigh-

borhood pixels which are vertically and horizontally aligned with the center have higher weights

than the rest. The differences are divided by the number of neighborhood pixels excluding the

center pixel. The rms operator is used to combine the two outputs.

Table 3.2: The horizontal direction detection mask

-1/8 -2/8 -1/8

0 0 0

1/8 2/8 1/8

Table 3.3: The vertical direction detection mask

-1/8 0 1/8

-2/8 0 2/8

-1/8 0 1/8
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Figure 3.8: The Sobel operator output obtained using a neighborhood size of 3x3

Figure 3.8 shows the result of applying this operator on the image under analysis. This output

is slightly better than the simple gradient output in that it is less responsive to rock-texture but

also suffers from noise sensitivity. It also requires pre-filtering with a low pass filter.

3.3.3 The Prewitt operator

The Prewitt operator computes the derivative of the image using the Prewitt approximation to

the derivative as shown in the 2 masks below. This operator is similar to the Sobel except that

the nonzero elements of the mask add up to unity. The masks of Prewitt are apparently optimal

while those of Sobel are not [13]. This is because each of the non-zero elements in mask has

equal contributions to the final response while the Sobel operator response is dominated by the

elements which are aligned with the center element.

Table 3.4: The horizontal direction detection mask

-1/6 -1/6 -1/6

0 0 0

1/6 1/6 1/6

Figure 3.9 shows the output after applying Prewitt’s operator on the image under analysis. It is

similar to the gradient and Sobel output in that it requires pre-filtering to reduce noise sensitivity.
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Table 3.5: The vertical direction detection mask

-1/6 0 1/6

-1/6 0 1/6

-1/6 0 1/6

Figure 3.9: The Prewitt operator output obtained using a neighborhood size of 3x3

3.3.4 The Laplacian of Gaussian

This operator locates edges by convolving the image with a Laplacian of Gaussian mask. A

continuous 2D Gaussian functionK(x,y) is given by:

K(x,y) = e−( x2+y2

2σ2 )
. (3.28)

The Laplacian operator∇2 on the gaussian function can be written as:

∇2K(x,y) =
∂2K(x,y)

∂x2 +
∂2K(x,y)

∂y2 . (3.29)

After substitution and taking derivatives the final Laplacian of gaussian operator works out to

be:

∇2K(x,y) = (
1

σ2)2K(x,y)(x2 +y2−2σ2). (3.30)

This operator effectively detects local edges around the pixel in questions due the dip in weights

around the center. The space parameterσ controls the width of the dip and thus the width of

the detected edge traces. The larger it is, the wider the edge tracks become. Figure 3.10 shows

25x25 Laplacian of Gaussian mask with aσ value of 2.5.
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Figure 3.10: An example of 25x25 Laplacian of gaussian operator with the sigma value of 2.5

Figure 3.11 shows the result of applying the Laplacian of Gaussian on the image under analysis.

The edge strength at the boundary is very high all around the rock boundary. The response is

high even for the weak edges and thus it is highly sensitive rock-surface cracks and texture.
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Figure 3.11: The Laplacian of Gaussian operator output with a neighborhood size of 41x41 and

a sigma value of 2.5

3.3.5 The Canny operator

This operator filters each column of the image with a 1-D Gaussian and then filters the outputs

with a 1-D derivative of the Gaussian to obtain gradients in the vertical direction. This operation

is repeated on the transposed image to obtain gradients in the horizontal direction. The two

gradients are finally combined using the rms operator. A simpler implementation convolves the

1-D gaussian mask and its derivatives first and uses the resultant 1D mask to convolve the image

along each column in each of the directions. In formal terms:

K(x) = e−( x2

2σ2 )
. (3.31)

K′(x) = (
−x
σ2 )e−( x2

2σ2 )
. (3.32)

The 1D operator is computed as the convolution:

C(x) = K(x)∗K′(x) (3.33)

The imageI(x,y) is convolved with the column vectorC(x) along each column to obtain edges

in the vertical direction. An example of a 1-D Canny operatorC(x) with a σ value of 2.5 is

shown in figure 3.12. The imageI(x,y) is then transposed and convolved to obtain horizontal

edges. The rms operator is used to combine the two outputs.

The parameterσ controls the width of the traces and the rejection of noisy responses. A smaller

value reduces the width of the traces and results in a noisy response due to rock-surface cracks
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Figure 3.12: The 1-D canny operator with a sigma value of 2.5

and texture. A larger value increases the width of the traces and results in a less noisy image.

Figure 3.12 shows the output of the Canny operator on the image under analysis. It has lower

edge strength response on rock surfaces and high responses on the boundary. It appears to be

less sensitive to noise, rock-surface cracks and texture than the other gradient operators which

are under investigation.

Figure 3.13: The Canny operator output with a sigma value of 2.5
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3.4 Summary

This chapter introduced traditional image processing procedures that can be used in the devel-

opment of the segmentation algorithm. It is apparent that thresholding techniques can be used

for locating possible rock locations in the image, while rock-edge detection can be used as a

guide for tracing out edges of rocks in an image.

The investigation shows that the adaptive thresholding method is more suitable than the

histogram-dependant global thresholding approaches on rock-scene images. This is because

of its ability to adapt the threshold according to gray-value changes within the image. However

the window size of the filter affects the range of sizes of the particles that are detected. As a

solution to this problem a two-window adaptive thresholding method in introduced. It is found

to be the best method for thresholding images of rock-scenes.

Finally, rock-edge detection methods are also investigated. It is apparent from the investigation

that, with the exception of the Canny operator, most of these methods require a pre-filtering

stage. The canny operator output appears to be the best of all the operators’ outputs since it has

weak responses from noise and texture variations but strong responses at the actual rock edges.

The Laplacian of Gaussian appears to have the worst response on the rock-scene image under

analysis. However, with the introduction of pre-filtering methods the rankings of the operators

may change.
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Filtering methods

4.1 Introduction

In computer vision applications, the noise that is imposed on digital images comes from dig-

ital imaging processes such as sampling, quantization and random disturbances in the capture

hardware. Noise is undesirable and should be reduced before further processing can take place.

A common property of noise is the wide spectrum of frequencies that it occupies. As a conse-

quence, the general objective of smoothing techniques is to remove the high frequency compo-

nents without severely distorting the signal of interest in the base-band. This can be achieved

using low pass filters such as the neighborhood averaging filter.

The type of noise that corrupted the signal of interest is usually unknown. The general assump-

tion in the signal processing community is that of a zero-mean white gaussian noise with small

variance, while the signal of interest is a smooth function. The objective is to recover the under-

lying signal of interest. However, a filtering operation may be required for more than just noise

suppression but also to enhance objects’ appearances by making gray level discontinuities more

prominent[1]. In this case linear approaches fail as they blur edges and surfaces equally. Non-

linear filtering approaches, which are tailored for edge preservation, are better alternatives and

they have recently found great attention within the research communities of signal processing.
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This chapter is concerned with noise suppression and image enhancement techniques, some of

which will be used in the subsequent chapters of this dissertation. A background theory of linear

and nonlinear approaches is given. A qualitative comparative evaluation of these methods on

the rock fragmentation image under analysis is carried-out simultaneously.

4.2 Linear filtering

Linear filters smooth the image by convolving it with a mask of weights, such that each pixel’s

gray level in the output image is a linear combination of gray levels in a predefined neighbor-

hood. The simplest of these is the box filter or the uniform filter where the normalized mask

consists of equal weights. However, pixels which are spatially close together within a prede-

fined neighborhood tend to have approximately the same gray value, and the box filter does not

exploit this. On the other hand the Gaussian filter exploits this by assigning a higher weighting

to the pixels within the mask which are closer to the mask-center. In this section, theory of

linear filters such as the box and the gaussian filters is discussed and their applicability to the

problem of smoothing rock scenes is investigated.

4.2.1 The uniform or box filter

The image is convolved with a mask of equal weights whose total sum is unity for preserving

the gray value of a flat region. The underlying assumption here is that the image is a smooth

low-frequency signal corrupted by white gaussian noise with a small variance. The assigning of

the mean gray value of the neighboring pixels to each pixel as the estimate is optimal inside the

almost flat regions since the least squares error is minimal. However images have discontinuities

which characterize object shapes where the estimate is affected by the huge deviation in gray

values. The gray values which differ significantly from the rest in the neighborhood should be

treated as outliers and not be included in the estimation process, so that the estimate lies on one

of the flat surfaces.
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Figure 4.1: The Fourier transform of 3x3 and 7x7 box filters

The box filter has a discrete Fourier transform (DFT) in the form of a sinc function as shown in

figure 4.1. This is a poor low pass filter because the attenuation does not increase monotonously

with increasing spatial frequency instead it oscillates [31]. The significance of this is that high

frequency noise is not removed entirely by the box filter due to the huge side-lobes as shown in

figure 4.1. As an example, figure 4.2 shows the effect of increasing the box filter size from 3x3

to 7x7 in the spatial domain. As can be seen, local detail in the form of small sized rocks and

texture across surfaces is being lost. This is due to the main-lobe being narrower as the window

size is increased. Texture reduction is desired but the destruction of small sized rocks is not a

desired effect. In addition to the destruction of small structures, rock edges are blurred as well.
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Figure 4.2: The effect of varying the mask size of a uniform filter from 3x3, 5x5 to 7x7

4.2.2 The Gaussian Filter

The Gaussian filter is a special kind of a moving averaging filter where the mask weights de-

crease radially from the center to the margins of the mask. It is expected to smooth better than

the uniform filter as the DFT of a gaussian with space parameterσ is another Gaussian with the

space parameter being the reciprocal ofσ. Thus the frequency decreases monotonously with

increasing spatial frequency. It has a number of desirable mathematical properties which are

used to increase computational speed. One such property is its separability as a result of:

G(x,y) = e( x2+y2

2σ2 ) = e( x2

2σ2 )e( y2

2σ2 )
. (4.1)

The space parameterσ controls the degree of smoothing. A largerσ value reduces the band-

width of the filter, thus destroying the high frequency content such as noise, rock texture, fines

and small rocks. On the other hand a lower value increases the bandwidth and thus reduces the

degree of filtering. The space parameter is exploited in many applications for the detection of a

wide range of object sizes in an image by filtering the image with variousσ values. This result

36



Chapter 4: Filtering methods

to a scale-space paradigm introduced by Witkin[66] defined as

I(x,y, t) = I0(x,y)∗G(x,y, t) (4.2)

whereI(x,y, t) is a population of Gaussian filtered images.I0(x,y) is the original image and t is

the scale space parameter which varies from 0 (the unfiltered original) to the maximum value

(the coarsest scale). It is shown by Koenderink[35] and Hummel[28] that this population of

images can be viewed as the solution to the heat diffusion equation:

It+1 =
∂2

∂x2(It)+
∂2

∂y2(It) (4.3)

whereI0 sets the initial condition. As an example, figure 4.3 shows a scale-space representa-

tion of rock scenes. The increase in the scale parameter transforms the images from a fine to

coarser scales. The drawback of this approach, which has been pointed out in [52] is the loss

of ”semantically meaningful” object descriptors, namely edges. In their work Perona and Ma-

lik go further by proposing a new scale space paradigm using anisotropic diffusion as opposed

isotropic diffusion offered by the linear Gaussian filtering. Anisotropic diffusion is described in

detail in section 4.3.2.
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Figure 4.3: A scale space set of derived images with the space parameter t on a 25x25 neighbor-

hood increasing from 0 to 3 where t is zero corresponds to the original image. L3

denotes the low-pass filtered image at t is 3.
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4.3 Non-linear filtering

As pointed out in the previous section, linear filtering methods do not preserve the edges of

objects in an image, and thus cannot be used as a pre-filtering scheme for rock edge detection. In

this section non-linear filtering methods which preserve edges during filtering are investigated.

The set of filters under investigation consists of rank value, anisotropic diffusion and bilateral

filters.

4.3.1 Rank value filters

The filters that have been considered so far use the convolution operation to smooth the image,

hence the linearity property. The convolution operation multiplies the signal values which fall

within a window and sums the products. This operation blurs edges due its sensitivity to outliers

in gray values. On the other hand, rank value filtering is a non-linear operation where the gray

values of pixels within the mask are compiled into a list, sorted in ascending order and the gray

value in a particular position of the list selected as the gray value of the center pixel. A median

filter is a common type of a rank value filter where the medium (50thpercentile) value in the list

is selected. Figure 4.4 illustrates the operation of a 3x3 median filter.
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Figure 4.4: Illustration of rank value filtering in a 3x3 neighborhood with the medium value being

selected from the sorted list

The median filter is robust to outliers as it eliminates gray-value or color outliers from the image.

It preserves edges to some degree due the selection of the median value which ignores outliers

in the mask. It is expected to remove impulse noise without severely affecting the neighboring

pixel gray values. It can be used for pre-filtering to reduce the texture variation across rock

surfaces without significantly blurring the edges. Figure 4.5 shows the filtering performance of

3x3, 5x5 and 9x9 median filters on the analysis image. It is apparent that spots and gray-value

spikes are progressively removed as the filter support is increased. In addition, the edges of

smaller structures also tend to diminish with increasing filter-support size.

Based on these results it is apparent that the median filter is not a powerful edge preserving

filter for this application and thus cannot be used for this purpose. Instead it can complement a

powerful edge preserving filter by pre-filtering to remove impulse noise and gray-value spikes

prior to applying an edge preserving filter.
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Figure 4.5: The effect of varying the neighborhood size of a median filter. The bottom output

results from filtering with a 3x3 mask, the second from the bottom with a 5x5, the

third from the bottom with a 7x7 and the top with 9x9 mask.
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4.3.2 Anisotropic Diffusion

Anisotropic diffusion is presented by Perona and Malik in [52] where they improve the stan-

dard scale space paradigm to preserve edges. The linear scale space paradigm introduced by

Witkin[66] can be viewed as isotropic diffusion which is defined by the partial differential equa-

tion:

It = div(c(x,y, t)∇I) = c4I (4.4)

where

c(x,y, t) = 1. (4.5)

The div operator denotes the divergence operator,∇I is the gradient of the image I,4I

is the Laplacian operator on I andc(x,y, t) is the diffusion coefficient. As pointed out by

Koenderik[66], this form does not permit space variant smoothing due to the constant diffusion

coefficient c. As a consequence surfaces and edges are blurred equally. This is the fundamental

flaw of this paradigm.

In the anisotropic diffusion framework, Perona and Malik allow spatial varying smoothing by

selecting a suitable nonconstant function for the diffusion coefficient resulting in the partial

differential equation

It = div(c(x,y, t)∇I) = c(x,y, t)4I +∇c·∇I . (4.6)

Ideally the diffusion coefficient should be unity on flat surfaces for isotropic diffusion and zero

at the boundaries for edge preservation. A gradient image∇I is a good indicator of region

boundaries and can be used to adapt the diffusion coefficientc(x,y, t) using:

c(x,y, t) = g(‖∇I(x,y, t)‖), (4.7)

where‖∇I(x,y, t)‖ is the gradient magnitude andg(‖∇I(x,y, t)‖) is the so called ”edge stop-

ping” function. The desirable properties of this function are that it should approach unity for

small gradient magnitudes and zero for large gradient magnitudes. The success of the filter-

ing depends highly on the choice of the edge stopping function used. In the next section, the

discrete formulation is presented.
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Perona and Malik’s discrete formulation

Perona and Malik approximated the continuous anisotropic diffusion equation with the follow-

ing discrete version [47]:

I t+1
s = I t

s+
λ

| ηs | ∑
p∈ηs

g(∇Is,p)∇Is,p, (4.8)

whereI t
s is the discrete image after the t iterations in a 2D grid,s denotes the current pixel

position,λ determines the rate of diffusion,ηs represents the spatial neighborhood of pixels,

and| ηs | is the number of nearest neighbors of pixelsas shown figure 4.6. The image gradient

in a particular direction is approximated by:

∇Is,p = Ip− I t
s (4.9)

wherep is a member of the 4 nearest neighbors ofs.

Figure 4.6: The neighborhood relations between the pixels of the discrete anisotropic diffusion

equation shown at the boundary.

The edge stopping function

The issue of selecting the appropriate edge stopping function requires further consideration.

Black and others [47] investigate various edge stopping functions, where they establish a rela-

tionship between anisotropic diffusion and robust estimation. The set of edge stopping functions

include the Lorentzian, Huber’s minimax and Tukey’s biweight which are derived from relevant

error norms. In their work, anisotropic diffusion is viewed as a robust estimation procedure for

estimating a piecewise smooth image from a noisy image. The assumption is made that the

43



Chapter 4: Filtering methods

noise is Gaussian distributed with zero mean and a small variance, and it is pointed out that this

assumption is not valid at object’s boundaries as some of the pixel’s neighborhood gray values

are outliers. Some of the highlights of the work in [47] are outlined in the remainder of this

section.

In robust statistics, the problem of estimating a piecewise smooth image from a noisy one can

be posed as an optimization problem, where an image is sought which satisfies the criterion:

min
I

∑
s∈I

∑
p∈ηs

ρ(Ip− Is,σ). (4.10)

Hereρ(·) is a robust error norm andσ is the scale parameter which controls its width. The

design of the robust error norm should ensure that the effect of outliers at the boundaries is

reduced. Applying gradient descent to the problem results in:

I t+1
s = I t

s+
λ

| ηs | ∑
p∈ηs

ψ(Ip− I t
s,σ), (4.11)

whereψ(Ip− Is,σ) = ρ′(Ip− Is,σ).

The functionψ is termed the influence function in robust statistics literature [47]. Comparing

the robust estimate equation 4.11 to the discrete formulation by Perona and Malik in 4.8, it is

clear that the relationship between the 2 formulations in terms of an arbitrary inputx is:

g(x)x = ψ(x,σ). (4.12)

This relationship can be exploited by viewing anisotropic diffusion as robust estimation and de-

termining how large a magnitude gradient should be for it to be classified as an outlier (”edge”)

usingσ. Figure 4.7 shows the relationship between the 2 formulations graphically using the

least-squares, Lorenzian and Tukey’s biweight functions.

A qualitative comparison of the functions reveals that the Lorentzian is more robust to outliers

than the least squares since its edge stopping functiong(x) tends to zero asx tends to infinity.

Ideally, the edge stopping function should be zero above a certain threshold. Tukey’s bi-weight

function achieves this by stopping diffusion completely above a thresholdσ. In [47], the value

of sigma is determined as the ”robust scale”,σe, of the image found using

σe = 1.4826MAD(‖∇I‖) = 1.4826medianI [‖∇I −medianI (‖∇I‖)‖]. (4.13)
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Figure 4.7: Various edge stopping functions, influence functions and associated error norms
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The parameterσe is a robust estimate of the variation in gradient magnitude of image I. The

MAD denotes the median absolute deviation and the constant 1.4826 is selected such thatσe is

unity for a zero mean normal distribution with a variance of unity. This occurs when the MAD

is 0.6745 [7]. The results of applying the defined anisotropic diffusion filter with aσ value of

0.0196 on the image under analysis, for a varying number of iterationst are shown in figure 4.8.

Observing the cross sectional profiles, it can be seen that where huge deviations occur in gray

value, diffusion does not take place, while on regions with small changes in gray value diffusion

increases with the number of iterations. Inspecting the actual filtered images, it can be seen that

texture on rock surfaces, cracks and edges are preserved. This is due to the lowσ value. This is

the scale space paradigm proposed by Malik and Perona as a replacement of the linear standard

paradigm.

An interesting scenario is where the image is anisotropic diffused with variousσ values while

keeping the number of iterations t and the diffusion rate constant. It is expected that the set

of filtered images will range from images containing only strong edges with highσ values, to

images preserving most edges at lowσ values. However, the anisotropic diffusion is already

computationally intensive due to the high number iterations required for effective smoothing.

Therefore such a scheme would increase the computational burden on the system.
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Figure 4.8: Results of setting the number of iterations to 50 in the top image, 100 in the second

image from the top, 250 in the third image and 300 iterations in the bottom image

while keeping the diffusion rate and sigma value constant at 1 and 0.0196 respec-

tively.
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4.3.3 The Bilateral Filter

The bilateral filter is a non-iterative edge preserving filtering technique introduced by Tomasi

and Manduchi[59]. The filtering is spatially varying as in the anisotropic diffusion method. The

usual Gaussian kernel has weights which decrease with increasing distance from the center of

the kernel. On the other hand, the kernel weights of the bilateral filter are a combination of

spatial distance from the center of the kernel and the similarity in gray-value or color between

the pixel in question and the kernel center pixel. The bilateral filter as introduced in [59] has

the form

h(x) = k−1(x)
∫ ∫

f(ξ)c(ξ,x)s(f(ξ), f(x))dξ (4.14)

where the normalization term is

k(x) =
∫ ∫

c(ξ,x)s(f(ξ), f(x))dξ. (4.15)

The termsc(ξ,x) ands(f(ξ,x)) are the closeness and tonal weight functions of the Euclidean

distance between their arguments respectively. The gray valuef(ξ) in the neighborhood of the

central pointx is compared to the gray valuef(x) to obtain the spatial tonal weights(f(ξ), f(x)).

In [60], the generalized version of the Bilateral filter is introduced. It is argued that the central

value f(x) is noisy and should not be used as a good estimate for the underlying true signal

value [60]. Instead a less noisy estimate should be used by introducing a second image g which

provides a better estimateg(x). The new formulation of the Bilateral filter becomes

h(x) = k−1(x)
∫ ∫

f(ξ)c(ξ,x)s(f(ξ),g(x))dξ, (4.16)

where the normalization term is

k(x) =
∫ ∫

c(ξ,x)s(f(ξ),g(x))dξ. (4.17)

This is called Spatial-Tonal Normalized Convolution. The problem with this formulation is

that the procedure for obtaining the less noisy image g is not specified. If non-edge preserving

smoothing is used to obtain the image g, theng(x) will not be an accurate estimate at the edges.

On the other hand, an edge preserving scheme will use the noisyf(x) value as the true estimate

to obtain the image g. Based on this dilemma, the original formulation of Tomasi and Manduchi

as expressed in equations 4.14 and 4.15, is therefore used in the rest of this work.
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Gaussian Bilateral filtering

In this version, the closeness and tonal-weight functions are defined as Gaussian functions of

their arguments, where

c(ξ,x) = e−1/2(d(ξ,x)/σd)2
(4.18)

and

d(ξ,x) = ‖ξ−x‖ (4.19)

is the Euclidean distance betweenξ andx. The tonal-weight is given by

s(f(ξ), f(x)) = e−1/2(δ(f(ξ),f(x))/σr )2
(4.20)

where

δ(f(ξ), f(x)) = ‖f(ξ)− f(x)‖ (4.21)

is the absolute difference of the intensity valuesf(ξ) and f(x). This implementation requires

prior values of the space parameterσd and the similarity or range scale parameterσr . Based on

tests, the space parameter has little effect on the preservation of edges: it only imposes a close-

ness constraint so that pixels far away from the kernel center have little influence on the kernel

weighted mean. On the other hand, the selection of the similarity parameterσr is critical, and

can be estimated using the robust scale parameter proposed for the robust anisotropic diffusion

framework given by equation 4.13. As shown in figure 4.9, a single iteration of the bilateral

filter does not remove noise effectively because the central gray-valuef(x) is noisy.
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Figure 4.9: Results of setting the number of iterations to 1, 5, 10 and 15 from the top to the

bottom image respectively, while keeping range and space sigma constant at 5 and 3

respectively.
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Iterative Bilateral filtering is expected to remove noise and rock surface texture effectively as

the iteration index progresses, due to better estimates of the kernel center pixel gray values.

The required number of iterations is low compared to those required for anisotropic diffusion.

After experimentation and tests it was determined that 15 iterations are suitable for rock scenes.

This number can be reduced further by increasing theσr value with the increasing iterations

as shown in figure 4.10. This is expected to smooth rock surface cracks in addition to surface

texture and noise. Preceding this scheme with a 5x5 median filter should remove gray-value

spikes due to cracks and white spots on rock surfaces.
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Figure 4.10: A comparison between two iterative bilateral filters where one has a constant range

sigma value and the other has a varying sigma value with the number of iterations.

The number of iterations is set to 1 and 5. It is expected that they should have the

same output at iteration 1 as shown on the top two profiles. The two profiles on the

right show the output of the bilateral filter when the range sigma value is varied with

iterations as shown on the lower graph, while the sigma value is kept constant at 5

for the two profiles on the left.
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4.4 Summary

In this chapter, various linear and non-linear filtering methods were investigated. In particular,

linear methods in the form of the uniform and Gaussian filters were examined. These filters are

not suitable for smoothing rock scenes since they blur edges and flat surfaces equally. However

non-linear filters in the form of median filters, anisotropic diffusion and the bilateral filter are

found to be suitable.

It was found that impulse noise in the form of rock-surface texture and gray-value spikes

can be removed using the median filter, while rock-edges can be emphasized using either the

anisotropic diffusion or the bilateral filter approach. However, anisotropic diffusion is found

to be more computationally intensive than the bilateral filter. The bilateral filter is the adopted

method for smoothing rock-scenes.

The standard bilateral filter has a flaw in that it uses a noisy estimate of the true signal against

which the image gray-values are compared and as a result the filtering is not effective. An

iterative version is expected to perform better since less noisy estimates of the true signal are

achieved as the iteration index progresses. This is the version of the bilateral that is used in the

rest of this work.
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Morphological Image Processing

5.1 Introduction

It is apparent that it would be a cumbersome task to use only traditional image processing tech-

niques with pre-filtering methods in the development of a segmentation algorithm. In [38], edge

detection with correctional procedures in the form of histogram-dependent image thresholding

is adopted. However, it is reported that the desired accuracy is not achieved. Thus an integra-

tive approach which involves combining tools from both traditional and morphological image

processing with pre-filtering methods is a more viable route to follow.

Mathematical Morphology is an image processing paradigm whose tools modify the image

content using geometrical structures of particular shapes, with the image being viewed as a

landscape [11]. The structural elements vary from square to ball-shaped structures. Its initial

ideas originated from the work of Serra and Matheron in the 1960’s [58] and now have grown

into a field that provides many useful image processing tools. Its primitive tools such as ero-

sion and dilation, and the advanced tools in the form of closing and opening, modify the image

content non-linearly by subjecting them to mathematical set operations [38] that either contract

or expand the regions in the image. In addition, modern morphology in the form of the wa-

tershed transform is recently perceived as the method of choice for many image segmentation

tasks [56]. In this work, the watershed transform forms the kernel or the core of the adopted

segmentation approach.

This chapter is broken down as follows: firstly, formal definitions of the basic and advanced

morphological techniques are given in sections 5.2 and 5.3 respectively. The reconstruction
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operator is then introduced in section 5.4. In section 5.5, the watershed transform is introduced

in terms of its background theory and definitions. Finally marker-based watershed is introduced

in section 5.6.

5.2 Basic transformations

This section presents background theory of basic morphological transformations and their ap-

plication to rock scene images.

5.2.1 Erosion and dilation

Erosion and dilation are the fundamental transformations of mathematical morphology from

which the advanced transformations are derived.

Binary Dilation can be regarded as the expansion of a set by an amount limited by the properties

of the structural element. These properties are the shape, size and the reference or the origin of

the structural element. The formal definition for binary images in terms of set theory is

δg( f ) = f ⊕g = {p| gp
⋂

f 6= /0}, (5.1)

where p is the current pixel position,gp is the translated structuring element with its origin at p

andδg( f ) denotes the dilation operation on the binary image f. In a nutshell, the dilation result

is the set of image pixels where the intersection between the translating structuring element and

the foreground region is not empty [9].

Binary Erosion can be regarded as the contraction of a set by an amount limited by the proper-

ties of the structuring element. The formal definition of erosion is

εg( f ) = f 	g = {p| gp ⊂ f}, (5.2)

The result of image erosion is the set of all the pixels of f where the translated structuring

elementgp is completely contained within the foreground area [9]. Binary morphology can be

regarded as a particular example of grey-scale morphology where the gray values are limited to

one and zero.
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The generalized gray-scale morphological operations are realized using the concept of an

Umbra functionU( f ) [11]. The Umbra of a d-dimensional functionf (x), wherex is a d-

dimensional vector, is given by

U( f ) = {(x,b) : b ≤ f (x)}. (5.3)

The Umbra is the set of all points on and below the surface functionf (x) as shown in figure

5.1. The original functionf (x) can be recovered using the top operationT defined as

f (x) = T(U( f )) = max{b : (x,b) ∈U( f )}. (5.4)

Figure 5.1: The umbra U(f) of a function f(x)

Gray scale erosion and dilation are defined in terms of the Umbra of an image f as

f 	g = T[U( f )	U(g)] = min{ f (x+y)−g(y)} (5.5)

and

f ⊕g = T[U( f )⊕U(g)] = max{ f (x−y)+g(y)} (5.6)

respectively, where g is the translating structural element, the positionsx±y fall within the do-

main of the function f andy is within the domain of g. Figure 5.2 shows the result of applying

binary image erosion and dilation on a binary rock scene. It appears that erosion reduces the

foreground and if holes are present, they are enlarged. Foreground areas smaller than the struc-

turing element are removed. Dilation enlarges the foreground areas and closes holes whose size

is smaller than the structuring element size.

56



Chapter 5: Morphological Image Processing

Figure 5.2: The original binary image, binary eroded and dilated images with a square structuring

element of size 3x3. The original sample image is adaptively thresholded with a

window size of 91x91

Figure 5.3: The sample image, greyscale eroded and dilated images with a disk structuring ele-

ment of radius 5.

Figure 5.3 shows the results of applying gray-scale erosion and dilation on the sample image.

The erosion output has dark disk shaped patches whose gray values are the minima values

within the disk shaped neighborhood. The dilation output has bright disk shaped patches whose

gray values are the maxima values within the disk shaped neighborhood.

5.3 Advanced transformations

This section presents the background theory of advanced morphological operations [6] and their

application to the rock scene sample image.

57



Chapter 5: Morphological Image Processing

5.3.1 Opening and closing

These operations are derived from the combinations of erosion and dilation. The opening oper-

ator is defined as

f ◦ g = ( f 	 g) ⊕ g. (5.7)

Opening can be thought of intuitively by considering the image as a landscape where the gray

value at the pointx is the height. Sliding the structuring element g underneath the surface and

determining how high it can be pushed up defines the opening operation.

The closing operator is defined as

f • g = ( f ⊕ g) 	 g. (5.8)

Intuitively, the structuring element is slid on top of the image instead of underneath. The extent

to which it can be pushed downwards is determined. The result is a morphologically closed

image.

Figure 5.4: The original binary scene, binary opened and closed images with a square structuring

element of size 3x3. The original sample image is adaptively thresholded with a

window size of 91x91

Figure 5.4 shows the result of applying binary opening and closing operations on a binary rock

scene image. It can be observed that the opening operation removes noisy spots without severely

distorting larger structures. Closing fills holes without severely distorting the shape of larger

structures.

Figure 5.5 shows the result of applying gray-scale opening and closing operations on the sample

image. It can be observed that the opening operation’s output is a non-linearly low pass filtered
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Figure 5.5: The sample image, greyscale opened and closed images with disk structuring element

of radius 5.

image. Bright and noisy structures whose widths are less than the diameter of structuring ele-

ment are removed. On the other hand, the closing operation fills holes whose radii are smaller

than the radius of the structuring element.

5.3.2 Morphological gradient

Edge detection is presented in chapter 3, where various differential edge detectors are investi-

gated. The morphological gradient operator achieves edge detection using morphological op-

erations. A simple subtraction of the eroded image from the original image gives the required

quantity. This is written as

grad( f ) = f − ( f 	 g) (5.9)

Figure 5.6: Morphological gradient with a disk structuring element of unity radius
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5.3.3 The Distance Function

The distance function assigns to each pixel in a binary image a value equivalent to its distance

from the background. In formal terms, let Y be a set ofZ2 then for every element y of Y the

distanced(y) to the complementary setYc is defined as:

d(y) = dist(y,Yc), for all y ∈ Y (5.10)

Figure 5.7: A binary rock scene and its distance transform version

Figure 5.7 shows a binary rock scene image as an input to the distance function and the distance

function output.

5.4 Reconstruction

Reconstruction is a very useful tool of mathematical morphology. Some of the applications

where it is used are in characterizing froth flotation performance in [20] and [67]. Reconstruc-

tion operators can be divided into binary and greyscale reconstruction operators.

5.4.1 Binary reconstruction

Binary reconstruction can be defined in terms of connected components and geodesic

dilations[67].
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Connected components

Let I and J be two images defined over the same domain D withJ⊆ I . This means that J is the

marker image and I the mask image, according to the literature. Let the connected components

of I be I1, I2, I3......In. Then the binary reconstructionRI (J) of the mask I from marker J is the

union of the connected components of I which contain a pixel from J. In formal terms

RI (J) =
⋃

J
⋂

Ik 6= /0
Ik. (5.11)

Geodesic dilations

Geodesic dilations (erosions) are defined in terms of geodesic distance. Geodesic distance is

defined in [6] as follows: suppose that a set X is a subset of theZ2 space, and x and y are

two points within X. Then the geodesic distancedX(x,y) between x and y is the length of the

shortest path included in X that links x and y, as shown in figure 5.8.

Figure 5.8: Geodesic distance between points x and y
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The concept of Geodesic dilations is defined in terms of geodesic distance as follows in [67]:

suppose that the set X is a subset ofZ2 and Y is a subset of X. Then the geodesic dilation of

size n of the set Y (where n is a positive integer) is the set of all points within X whose geodesic

distance to Y is less than or equal to n. In formal terms

δ(n)
X (Y) = {p∈ X|dX(p,Y)≤ n}. (5.12)

An elementary geodesic dilation of the set Y is obtained using the following equation

δ(1)
X (Y) = (Y⊕B)

⋂
X, (5.13)

where B is a unity sized structuring element. A geodesic dilation of size n (where n is a pos-

itive integer) is obtained by iterating elementary geodesic dilations n times. Based on these

definitions, the binary reconstructionRX(Y) of the set X from marker Y is given as

RX(Y) =
⋃
n≥1

δ(n)
X (Y) (5.14)

This performs iterations of geodesic dilations of marker Y until stability is reached. Figure 5.9

shows the binary reconstruction of the white areas using the black areas within the white blobs

as the set of markers.

Figure 5.9: Binary reconstruction of the white areas with the black areas within the white blobs

as the set of markers.

5.4.2 Greyscale reconstruction

Greyscale reconstruction is defined here in terms of geodesic dilations as obtained from [67].

An elementary geodesic dilation of greyscale image Y under X is defined as:

δ(1)
X (Y) = (Y⊕B)∧X (5.15)
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whereY⊕B is the greyscale dilation of Y by a structuring element of size unity, and the∧ is

the point-wise minimum operator analogous to the intersection operator.

A geodesic dilation of size n is obtained by iterating elementary geodesic dilations n times as

in the binary case. The Greyscale reconstructionRX(Y) of X from Y is obtained by iterating

geodesic dilations of marker Y until stability is reached. In formal terms

RX(Y) =
∨
n≥1

δ(n)
X (Y), (5.16)

where ’∨’ is the supremum operator which is analogous to the union operator of the binary case.

Figure 5.10: Greyscale reconstruction

Figure 5.10 shows the greyscale reconstruction of the mask function g using function f as the

marker. It appears that greyscale reconstruction extracts or removes the peaks of the mask

function. The dual reconstruction can be defined in terms of iterations of elementary geodesic

erosionsε1
X defined as

ε(1)
X (Y) = (Y	B)

∨
X. (5.17)

Here
∨

is the point-wise maximum operator,	 is the erosion operator and B is a unity sized

structuring element. Based on this information, the dual reconstructionR∗X(Y) of mask X from

marker Y is obtained by iterating geodesic erosions of marker Y until stability is reached. In

formal terms

R∗X(Y) =
∧
n≥1

ε(n)
X (Y). (5.18)

The relationship between the reconstructionRX(Y) and its dual reconstructionR∗X(Y) is given

as

R∗X(Y)≡ (RX′(Y′))′. (5.19)
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This shows that the dual reconstruction can be implemented using the reconstruction operator

by exploiting the complementary feature of the reconstruction and its dual reconstruction.

5.5 The Watershed transformation

The watershed transform is the method of choice for many segmentation tasks in the field of

mathematical morphology [6]. This is mainly due to the attractive features which it possesses in

the form of continuous contour detection, and the efficiency in computation which lends itself

well to real time implementation.

The segmentation is based on the natural phenomenon of flooding a topographical landscape.

The image is seen as a topographical landscape where each point’s gray value is equal to the

height of the landscape at that point. Holes are pierced at the minima of the landscape and it is

lowered into some fluid at a constant speed. The liquid is expected to penetrate the holes and

fill up the catchment basins until fluids from various basins begin to merge. At the occurrence

of this event, dams are built at the points of merging to separate flows from different basins.

These dams are the watersheds and the barriers are the watershed lines.

This forms the immersion definition, and it is argued to be better suited to practical implemen-

tation than the definition by catchment basins [61]. The catchment basin definition is based on

the fact that points will only be assigned to the same catchment basin if imaginary drops of

water falling on them descend to the same minimum [5].

This section presents the formal definition of the watershed transformation.

5.5.1 Preliminary definitions

The concepts of geodesic zone of influence and skeleton by influence zones are introduced, as

obtained from [6].

Geodesic zone of influenceizX(Yi) of connected componentYi in X is defined as the set of points

in X at a finite geodesic distance, and closer toYi than any otherYj . In formal terms:

izX(Yi) = {x∈ X,dX(x,Yi) finite ,∀ j 6= i,dX(x,Yi) < dX(x,Yj)}. (5.20)
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The boundaries between the various geodesic zones of influence are called the geodesic skeleton

by zones of influenceSKIZX(Y) of Y in X. This is formally written as:

SKIZX(Y) = X/IZX(Y). (5.21)

The symbol ”/” denotes the set difference, andIZX(Y) is the union set of all the geodesic zones

of influenceizX(Yi). Figure 5.11 shows the visual descriptions of the various concepts.

Figure 5.11: Geodesic zones of influence and skeleton by zones of influence

5.5.2 The definition of the watershed by immersion

The formal definition of immersion that is given here is obtained from [6] and [67]. The

greyscale image f is assumed to be a 2D function of the image space grid. The absolute mini-

mum of f on the entire domain is denoted ashmin andhmax is the absolute maximum. A section

of f at level h is denoted byZh( f ). More formally:

Zh( f ) = {x∈ Z2 : f (x)≤ h}. (5.22)

The immersion procedure begins at the minimaZhmin where the water penetrates the pierced

holes. If thehmin level is incremented by one, the sectionZhmin+1 is obtained. Obviously the

relationship

Zhmin ⊆ Zhmin+1 (5.23)
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holds. Let Y be one of the connected components of the sectionZhmin+1. In [67] it is identified

that there are three possible relationships between the connected components of the sections

Zhmin andZhmin+1, namely:

• Y
⋂

Zhmin = /0 : a new minimum is encountered at connected component Y where its

surrounding pixels have gray values greater thanhmin + 1. This minimum should be

pierced so that water enters to fill up its associated catchment basin.

• Y
⋂

Zhmin 6= /0 and is connected: Y is still within the catchment basin associated with the

minimumZhmin. The grey value of the pixels of Y are less than or equal tohmin+1.

• Y
⋂

Zhmin 6= /0 and is not connected: other minima are encountered and the concept of

geodesic zones of influence is used to create the watershed lines.

Combining all the possibilities for the second set, and denoting byWh( f ) the catchment basins

of f at section level h, the following relationship is obtained:

Whmin+1( f ) = minhmin+1( f )
⋃

IZZhmin+1(Whmin). (5.24)

Hereminhmin+1( f ) denotes the set of points at altitudehmin+1 belonging to the minimum of f.

This relationship is generalized for any value of h as follows:

Wh+1( f ) = {minh+1( f )
⋃

[IZZh+1( f )(Wh( f ))],∀h∈ [hmin,hmax]}. (5.25)

The minimaminh+1( f ) of at levelh+1 are obtained from:

minh+1( f ) = Zh+1( f )/RZh+1( f )(Zh( f )), (5.26)

where the ”/” denotes the set difference operator and R is the reconstruction operator defined

in section 5.4. The algorithm is initiated atW−1 = /0. The final watershed line setWL( f ) is

WL( f ) = {Wc
N( f ),with N = max( f )}. (5.27)

Figure 5.12 shows the construction of the watershed by the process of immersion as defined in

equation 5.24.
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Figure 5.12: Watershed construction based on the three possible relationships

5.5.3 The over-segmentation problem

The watershed algorithm as presented over-segments the image undergoing segmentation. The

reason for this is that in real world images catchment basins are not well defined due to im-

age noise and texture. This result in the image having too many catchment basins which are

identified by the immersion process.

Pre-smoothing

One approach to reducing over-segmentation is to apply a pre-smoothing filter before applying

the watershed transform. Obviously the noise and texture level will be reduced so that there are

fewer catchment basins than before. However, low-pass filters which are not sensitive to edges

will destroy some of the boundary gradients, and as a result the shape of objects outlines will be

distorted. Assuming that an edge sensitive pre-smoothing filter is used, such as the bilateral or

the anisotropic diffusion filter, the over-segmentation will be reduced. However, this does not

remove the problem completely.

5.6 Marker-based watershed segmentation

Another approach to solving the over-segmentation, which can be used in tandem with

pre-smoothing is enforcing a pre-determined set of markers to be the local minima of the

gradient[6]. Most of the time in practice the centers of the objects can be determined. En-
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forcing these centers to be the global minima with respect to the objects will lead to a single

catchment for each object in the image. These markers will be the new minima of the gradient

function and the real minima will not be taken into account. As a result the behavior of the wa-

tershed transform will change. The following is the modified watershed definition as obtained

from [6].

Let g be the gradient image,Wh(g) be the section of g at level h, and M be the marker set. Then

Wh+1(g) = {IZ(Zh+1
⋃

M)(Wh)],∀h∈ [hmin,hmax]} (5.28)

where the initial flooding sourcesW−1 are the predetermined set of markers:

W−1(g) = M. (5.29)

This new definition of the watershed transform appears simpler than the original version simply

because the real minima of g are not determined.

5.6.1 Homotopy modification

The process of modifying the gradient function g as described above is termed homotopy mod-

ification. In other words, the homotopy of the function has been changed by piercing holes and

thus creating new minima as shown in figure 5.13. This can be achieved by reconstructing the

sections of g with the marker set M as follows [6]:

Zh(g′) = {RZh(g)
⋃

M(M),∀h}. (5.30)

The functiong′ can be recovered from the sections using

g′(x) = min(h : x∈ Zh(g′)) (5.31)

Once the homotopy of the gradient function g is applied to obtaing′ then the final step is

performing the marker-based watershed segmentation ofg′.
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Figure 5.13: Watershed construction based on the three possible relationships

5.6.2 The watershed transform of a rock scene

The watershed transform is applied on the rock scene image under analysis and a few remarks

are made. Firstly, the successful application of the watershed transform requires a gradient

transform of the original image to enforce catchment basins. Secondly, a set of markers of local

minima of the gradient image has to be pre-determined. These markers form the initial positions

of the immersion process.

The immersion process requires well defined boundaries of the catchment basins in order to

stop flooding at the correct points. Unfiltered images tend to have inaccurate watershed lines

due to the noise and cracks across rock surfaces. Figure 5.13 shows the predefined set of markers

overlayed on the original image, the noisy and inaccurate watershed lines, and the more accurate

watershed lines due to pre-filtering with a low pass filter before applying the gradient operator.
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(a) Markers (b) Noisy and inaccurate

watershed lines of the

original image

(c) Accurate watershed

lines of a smoothed im-

age

Figure 5.14: Applying the watershed transform to a rock-scene image

5.7 Summary

In this chapter, the underlying theory behind the most useful tools of mathematical morphology

is presented. In particular, the basic morphological tools in the form of erosion and dilation are

handled. This is followed by the description of more advanced tools which are derived from

the basic ones in the form of opening, closing and the morphological gradient. The distance

function is another advanced tool but it is not based on the basic tools. All of these tools can

form useful building blocks of the rock scene segmentation process.

The theory behind the most powerful tools in the form of the reconstruction operator and the

watershed transform is finally presented. These tools form the core of the work presented in this

dissertation as far as the segmentation of rock scenes is concerned. Reconstruction is used for

determining the positions of the local minima of the gradient image. The watershed transform

is a very powerful image segmentation tool.

In addition, a combination of the watershed transform and greyscale reconstruction result in a

marker-based watershed transform, where a pre-selected set of minima is used to significantly

reduce the over-segmentation problem. However, when this is applied on a rock-scene without a

pre-filter the resultant watershed lines do not accurately trace the edges of the objects of interest.

An edge preserving pre-filter should be used to increase the accuracy of these lines.
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Rock scene segmentation

6.1 Introduction

Rock scene segmentation involves partitioning a scene of rocks into disjoint regions, such that

each region is a closed outline of each rock in the image. These outlines should resemble as

closely as possible the perceived edges of rocks. In this chapter, a rock scene segmentation

procedure that is expected to be capable of segmenting any scene of rocks is constructed. The

complete system is then tested on ore images from two different mineral processing plants,

which are captured under varying lighting conditions. The test-set is expected to test the system

for robustness under the specified conditions.

Generally, the implemented segmenter has two main components: the rock locator for deter-

mining markers of rocks, the actual segmentation process which is based on marker-based wa-

tershed segmentation and a scheme for locating fines. This chapter is broken down as follows:

in section 6.2, an approach for pre-selecting a set of minima or markers is implemented. This is

followed by the development of a watershed-based segmentation algorithm in section 6.3. The

implemented segmentation algorithm is then tested for robustness to varying lighting conditions

in section 6.4. Finally, the procedure for locating fine particles is described in section 6.5.
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6.2 Automatic rock location for marker extraction

The immersion process of the watershed transform requires initial positions of the gradient

local minima within the image. It is obvious that in the case of rock scenes there should be

one marker for each rock to avoid splitting or merging. Splitting is erroneous when a two or

more markers are assigned to a single rock, while merging is erroneous when a single marker

is assigned to two or more rocks. Thus an effective procedure for identifying and marking of

rocks, should determine markers without resulting in splitting or merging of regions.

In ideal conditions where a rock is smooth without any texture and cracks across the surface,

the gradient of its grey values will have a maximum at the boundary and a minimum at the

approximate rock center. These approximates centers are the regions that should be located.

Two methods in the form of the centroid method and the reconstruction method are devised and

investigated for determining these approximate centers. In what follows it is assumed that a

binary rock image is obtained by thresholding a grayscale rock image using the two-window

method.

6.2.1 The centroid method

The centroid method determines the centroids of the white areas in a binary rock scene. The

centroid co-ordinates of a connected foreground region in a binary image are determined by

finding its center of mass co-ordinates, as shown figure 6.1. For each connected region, the

center of mass co-ordinates are computed as

(Cx,Cy) = (mean(xi),mean(yi)), (6.1)

wherei is the counter for each pixel co-ordinate position(xi ,yi) in the foreground area. This

method locates a center for each connected foreground region. However, it is not robust to

situations where adjacent rocks are in contact with each other. This is because the bi-level

thresholding process introduces errors in situations where there is no shadow separating two

rocks in close proximity. This results in erroneous merging. Some of these events are shown in

figure 6.1.
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Figure 6.1: A Binary rock scene with marked foreground areas

6.2.2 The reconstruction method

The reconstruction method attempts to remedy the drawback of the centroid method by extract-

ing the positions of the local maxima of the distance transform as rock locations. The distance

transform (DT) is described in chapter 5 and there it is shown that the DT local maxima positions

can be extracted using the greyscale reconstruction operator. The signal under reconstruction is

the distance transform of the binary rock scene. This signal is termed the mask in reconstruction

terminology, and the marker image is the mask signal negatively offset by a constant h:

marker= DT−h. (6.2)

Here DT denotes the distance transformed image. The reconstruction is then performed as

reconstructed= RDT(DT−h). (6.3)

The reconstructed signal is the mask signal with local maxima chopped off as shown in figure

5.10. The local maxima are recovered by subtracting the reconstructed from the original DT

image:

LMP = DT−RDT(DT−h), (6.4)

where LMP denotes Local Maxima Positions. Figure 6.2 shows the positions of the DT lo-

cal maxima overlayed over the original rock scene image. As can be seen, the reconstruction

method does acknowledge connected rocks by assigning multiple markers in such situations.

However, due to the imperfections of the thesholding method giving rise to irregularly shaped
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foreground areas, a single rock can be assigned many markers resulting to erroneous splitting.

This occurrence can often be reduced by selecting a suitable value for the h-parameter of the

grey-scale reconstruction method.

Figure 6.2: Binary rock scene with markers determined from the reconstruction method

6.2.3 The combinational approach

This approach aims at correcting for the errors caused by the reconstruction method by using

the centroid method. For each foreground region in the binary rock scene, a decision needs

to be made of whether to select a marker from either the centroid output or markers from the

reconstruction output, as shown in figure 6.3. This selection is expected to correct for either

erroneous splitting or merging. It requires a suitable criterion for making the decision. However,

it is difficult to devise a criterion which does not involve the segmentation output.

A more realizable approach involves the case where the two methods are used with the segmen-

tation process as shown in figure 6.4. Regions can be selected which resemble rocks in a sense

that they are roughly circular in shape. For each white area of the binary rock scene a com-

parison between the corresponding segmented regions derived from both the centroid and the

reconstruction method is made. The watershed region features that are used are the circularity

of the region

C =
4πAregion

P2
region

, (6.5)

74



Chapter 6: Rock scene segmentation

Figure 6.3: A block diagram representation of the combinational approach

and the area proportion between the watershed region in question and the corresponding fore-

ground region in the binary scene

Ap =
Aregion

Abinary
. (6.6)

HereAregion andPregion are the area and the perimeter of the region in question, andAbinary is

the corresponding foreground area in the binary rock scene. The outputs of the method that

have higher feature values than the other are selected as possible rock candidates. In a sense, a

Figure 6.4: A block diagram representation of the realizable combinational approach

decision is being made of whether to split or merge a region given the features or characteristics

of segmented regions derived from the two methods.
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6.3 Watershed-based segmentation

The watershed transform requires a set of markers of the local gradient minima and the actual

gradient image as inputs. Given these two items, a watershed segmentation of the gradient

image is executed and the outlines of the rocks are determined. However, real images have noise

and texture imposed on them and as a result the watershed lines will be inaccurate. Therefore

a suitable pre-smoothing technique for rock scene segmentation is required. In chapter 4, the

iterative bilateral filter with an increasing photometric similarity parameterσr is proposed. This

technique is expected to be superior to the single iteration bilateral filter in that various edge

preservation levels are explored and edges are enhanced. A filtered image is tapped at each

output stage resulting in a population of images filtered at various degrees of edge preservation

and edge enhancement is achieved via the iterative property.

6.3.1 The basic framework

The structure of the iterative bilateral filter is shown in figure 6.5. It is clear that this filter has

one input andn outputs. Provided that the rangeσr values increase monotonically, the filtered

images are expected to vary in edge preservation from preserving most of the variation (edges

due to texture, some noise and cracks) at smallσr values, to preserving only highly varying

regions (strong rock edges) at higherσr values.

Figure 6.5: The structure of the iterative bilateral filter

In the context of the watershed transform, at smallσr values the watershed is expected to fol-
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low the gradient lines of small structures such as texture, small rocks, and cracks across rock

surfaces. However, this is driven by the selected set of markers in that the number of detected

small structures is determined by the number of markers. On the other hand, at higherσr values

most of the small variation due to texture, small rocks and cracks is diminished. In this case,

the watershed lines are expected to follow the outlines of larger structures such as big rocks.

However, these outlines might not be accurate as most of the detail has diminished at this stage.

The basic structure which includes the watershed processes is shown in figure 6.6. A gradient

operator (GO) is applied at the output of each bilateral filter (BF) stage. Any of the available

gradient operators of chapter 3 can be used. In this work, the morphological gradient operator

is used. Marker-based watershed segmentation processes (W) are then executed on each gra-

dient image. The information from then-watershed images is then combined using a multiple

watersheds analysis process to form a single final output image.

Figure 6.6: The structure of the watershed-based rock-scene segmentation framework

6.3.2 Incorporating the combinational approach

The structure of the basic framework as shown in figure 6.6 shows a single marker set input.

However, as pointed out in section 6.2 there are two marker sets. Recall that the combinational

approach, where both marker sets from the centroid and the reconstruction methods are used
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in the segmentation, is proposed in section 6.2. It is clear that incorporating this approach as

shown in figure 6.4 would require twice the number of executions of watershed processes that

the basic framework currently holds. This would be a significant burden as far as computational

speed is concerned.

A less burdensome solution is shown in figure 6.7. As can be seen, the marker-set from the

reconstruction method (RM) is applied in more stages than the centroid method (CM) marker-

set. This is because it is expected to be more accurate than the centroid method on scenes

which contain predominantly small rocks. However, it tends to split larger rocks and therefore

requires a correcting signal. The centroid method is expected to provide this signal by providing

highly merged watersheds in such situations. Based on this reasoning, the CM marker-set can

be injected at a position closer to the lowerσr values, where the accuracy at tracing rock edges

is expected to be higher, as shown in figure 6.7. This ensures accurate segmentation of larger

rocks in the absence of cracks. There is a wide scope of options consisting of heuristic position

assignments of the marker sets within the basic framework. Once the watershed images are

obtained, the goal is to determine those regions which are most likely to be rocks using the

watershed region features defined in section 6.2.3. This is achieved via multiple watersheds

analysis.

Figure 6.7: The structure of the modified watershed-based rock scene segmentation framework
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6.3.3 Multiple Watersheds Analysis

Multiple watersheds analysis is a procedure that combines the information from the various

watershed output images to form a single segmented output image. This approach is required to

extract from the population ofn-watershed images those watershed lines which are most likely

to be the actual rock edges. After much experimentation with variousn values, the suitable value

for n was found to be 8. Therefore 8 stages of the iterative bilateral filter are used resulting in 8-

watershed outputs as shown in figure 6.8. The CM marker-set was injected at the 3rd watershed

process from the highly merged watershed. As shown in figure 6.8, the images are arranged so

that the 8th watershed image was obtained using the centroid method marker-set.

Figure 6.8: The outputs of the watershed processes

The execution of the watershed-based segmentation algorithm outputs then-binary watershed

images so far. The proposed structure of the multiple watersheds analysis solution is shown

in figure 6.9. In this figure,n = 8 and the binary watershed images (BW) are arranged so that

the output from the CM marker-set is the 8th image on the highly merged side. The procedure

begins by adding then-binary watershed outputs to obtain a single image. The motivation for

doing this is that traces of rock edges on then-images are expected to overlap. Therefore adding

these binary watershed images is expected to result in high response values at the rock edges

of the resultant image. It is also expected that the overlap of traces will not be perfect and

this will result to disconnected boundaries when a high threshold is used for detection. On the

other hand, a lower threshold will result to spurious traces being also detected. This serves

as a motivation for adopting a multi-level thresholding approach. The image is thresholded at

(n−1)-levels ranging from 1 ton−1, resulting in a further (n−1)-set of binary images (BT).

As shown in figure 6.9, the binary watershed output from the CM marker-set is then appended

as one of the resultant images, to given-outputs.
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Figure 6.9: The proposed structure for multiple watershed analysis

In practice, the outputs of the highest two thresholds tend to have poor pixel connectivity and

as a result they are removed, as shown by the bounding box of BT6 and BT7 in figure 6.9. An

example of outputs after multi-thresholding the summation of the images of figure 6.8 is shown

in figure 6.10. As can be seen, at low threshold values, the outputs tend to be highly split. While

at high thresholds including the appended image, there is merging.

Figure 6.10: The multi-thresholding outputs

The multiple watersheds analysis is finalized by a boundary selection scheme. In this scheme,

the multi-thresholding outputs are traversed from the highly merged to the highly split image as

shown by the arrow of figure 6.9. At each image, boundary outlines which are roughly circular
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in shape and whose proportional area with the corresponding area in the binary rock scene

is greater than some threshold are collected. This scheme favors merged regions in a sense

that if a particular outline meets the requirements in the current image, then in the next image

the corresponding outline will not be considered. The final output of the multiple watershed

analysis is shown in figure 6.11.

(a) Original rock-scene image (b) Segmentation output

Figure 6.11: Final segmentation results

The black patches are a result of the circularityC and the area proportionAp parameters not

being set to zero on BT1, as shown in figure 6.9. As a result, regions of BT1 which do not

match the criteria are not selected by the boundary selection procedure. Provided that the BT1

parameters assume the lowest values as compared to the other BTs, then the ignored regions are

the worst regions, and it is justifiable to leave them out.

6.4 Testing for robustness to varying lighting conditions

In this section, the watershed-based rock-scene segmentation is tested for robustness to noise,

texture and surface cracks under varying lighting conditions. Six different images of ore from

two mineral processing plants are used as the test-set. The images of the test-set consisting of
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image1 to image6 are shown on the left in figures 6.12 to 6.17 respectively.

The first three scenes of figures 6.12, 6.13 and 6.14 are captured from the Waterval mineral

processing plant. The ore under imaging is on a conveyor belt under a hood. A single light

source at about 2m vertically from the conveyor belt to the hood is used. The camera is installed

next to the light source. On the other hand, the ore images of figures 6.15, 6.16 and 6.17 are

captured from another mineral processing plant under different lighting conditions. The images

from the latter appear to have been captured under brighter lighting conditions than those from

the former.

6.4.1 Parameter settings

The rock-scene segmentation algorithm has the following user-tunable parameters:

• Two windowsw1 andw2 of the two-window adaptive thresholding method.

• The h-parameter of the reconstruction method.

• The number of stages N of the iterative bilateral filter and rangeσr of each stage is com-

puted by determining the robust scaleσe of each stage defined by equation 4.13. The

weights (0.25/1.4826,0.4/1.4826,0.55/1.4826,0.7/1.4826,0.85/1.4826,1/1.4826) are

used to weigh eachσe value so that each weight from left to right weighs the correspond-

ing σe value from the highly split to the highly merged end respectively. The resultant

values are the selectedσr values.

• The area proportion(Ap)i and circularityCi at each level of the stack of watershed images.

At i = 1 is the highly merged watershed image and ati = 5 is the highly split watershed

image

The actual settings are shown in table 6.1.

6.4.2 Algorithm evaluation

The aim here is to judge the output of the algorithm visually and numerically. Presented below

are the outputs after applying the implemented segmentation algorithm on the test-set. The
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Table 6.1: Parameter settings of the rock-scene segmentation algorithm.

Parameter Regions

w1 25x25

w2 95x95

h 25

N 7

(Ap)1, C1 0.75, 0.80

(Ap)2, C2 0.70, 0.70

(Ap)3, C3 0.60, 0.60

(Ap)4, C4 0.25, 0.50

(Ap)5, C5 0.0, 0.50

visual results are shown on the right-hand side of figures 6.12 to 6.17. It can be seen that the

algorithm performs well on average on all the images of the test-set. At this stage the average

processing time for a 236 by 250 image is 36.032 seconds. The algorithm is implemented in

matlab with C-mex files.

Based on the assumption that the actual rocks in the image are accurately segmented, the total

negatives (fraction of non-rock) for each image are computed and presented in table 6.1. The

actual number of rocks was determined manually from each image. The fraction of non-rocks

N is defined as the fraction of the total number of regions (TNR) which are non-rocks. In formal

terms

N =
TNR−ANR

TNR
, (6.7)

where ANR is the actual number of rocks. Clearly, the fraction of rocks or total positivesP is

P =
ANR
TNR

. (6.8)

The fractions of non-rock regions are above the 50% mark for all the analyzed images, which

is undesirable. These regions should be removed before measuring the rock size distributions,

otherwise the errors will be large. Ideally, the fraction of non-rock regions should be reduced

without significantly reducing the fraction of detected rock regions. In the next chapter, a set of

tools from pattern recognition are applied to address this issue.

83



Chapter 6: Rock scene segmentation

Table 6.2: False alarm rates of the segmentation algorithm.

image TNR ANR N P

image1 106 32 69.80% 30.20%

image2 106 27 74.52% 25.48%

image3 102 36 64.70% 35.30%

image4 145 39 73.10% 26.90%

image5 150 40 73.33% 26.67%

image6 138 57 58.70% 41.30%

Figure 6.12: Test-image1 and the corresponding output after segmentation.

Figure 6.13: Test-image2 and the corresponding output after segmentation
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Figure 6.14: Test-image3 and the corresponding output after segmentation

Figure 6.15: Test-image4 and the corresponding output after segmentation

Figure 6.16: Test-image5 and the corresponding output after segmentation
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Figure 6.17: Test-image6 and the corresponding output after segmentation

6.5 Locating fines

The segmentation algorithm as it stands does not facilitate the measurement of fine particles.

These are the small particles which range in size from 1 pixel to about 50 pixels in area. These

particles are ignored by the algorithm since it is biased to selecting large circular particles as

rocks. Most of the fine particles are rejected by the rock locator process to limit computational

costs. These particles should be recovered via a less computationally expensive scheme. In this

section, the moment preserving threshold is proposed as a method for detecting fine particles.

6.5.1 Using the moment preserving threshold technique

The moment preserving technique of chapter 3 has three intensity values as its output namely,

the moment preserving thresholdT, the background mean gray valuew0 and the foreground

mean gray valuew1. The proposed method of locating fine particles using the moment pre-

serving technique assumes that rock recognition has been applied prior to fines location. This

allows negative masking of the coarse rocks of the original gray-scale image as shown in fig-

ure 6.18. The moment preserving threshold technique is then applied and using the foreground

mean gray valuew1 as a threshold, the fine particles are detected, as shown in figure 6.19. A

logical OR operator is the used to combine the detected fines and coarse particles and the final

output is also shown in figure 6.19 (see also the flow of processing diagram in figure C.1). As

can be seen, this technique does not recover all the fine particles in the image. This is mainly
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due to the bias in detecting bright particles and the limited camera resolution.

Figure 6.18: Original image and the corresponding negatively masked image

Figure 6.19: Located fines and the overall fine and coarse particles

6.6 Summary

In this chapter, the implementation of the rock scene segmentation algorithm is described. The

main components of the algorithm are the automatic rock locator, the iterative bilateral filter,

the marker-based watershed transform including marker extraction, the multiple watersheds

analysis scheme and the fines locator component.

A rock locator for marker extraction is firstly applied on the image to provide indications of rock
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locations. Two sets of markers are derived from a binary rock-scene using two methods in the

form of the centroid and reconstruction methods. The centroid marker method tends to merge

regions while the reconstruction method tends to split them. These properties are exploited in

the watershed-based segmentation framework for segmenting rock-scenes.

The watershed-based segmentation of rock-scenes firstly filters the image at various degrees

of edge preservation using the iterative bilateral filter. Watershed processes are then applied on

each filtered output to obtain a set ofn-watershed images. A multiple watershed analysis scheme

that selects the watershed boundaries which are most likely to represent rock boundaries is then

executed.

The final algorithm is applied to various ore images to test for its robustness to noise, texture and

surface cracks under varying lighting conditions. The visual results are encouraging. However,

the numerical results show high fractions of non-rock regions of greater than 50% on the test-set.

The final component of the rock scene segmentation algorithm is fines locator. This component

is expected to facilitate the measurement of fine particles.
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Rock feature classification for rock
recognition

7.1 Introduction

The rock-scene segmentation algorithm that has been described thus far has very high fractions

of non-rock regions, which is undesirable. This problem will cause large errors in the rock size

distribution measurement by biasing the measurement towards larger rock sizes. It is a major

requirement to reduce the non-rock fraction to a tolerable level, ideally without significantly

reducing the fraction of detected rocks.

In this chapter, feature classification methods are investigated for the purpose of recognizing

both rock and non-rock regions. Four feature classification methods, in the form of k-nearest

neighbor (KNN), probabilistic neural network (PNN), kernel adatron support vector machine

(SVM) and regularized least squares classification (RLSC), are selected for the investigation.

Feature subset selection methods are then investigated for the purposes of removing redundant

and irrelevant features [23, 24]. These are the features that impair the performances of feature-

based classification methods. Two commonly used feature subset selection methods in the form

of separability index (SI) optimization and principal component analysis are investigated.
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Finally, data is collected in the form of watershed boundary properties to form feature vectors.

Feature subset selection methods are applied to remove redundant and irrelevant features. The

feature classification methods are then trained and tested on the acquired data-set.

7.2 Preliminary definitions

A feature vector[x1,x2, ....,xn] of length n is a vector of n measurements whose elements are the

measurements of each object’s properties. Each object is then represented in an n-dimensional

feature vector space as a point [53]. The matrix of feature vectors denoted byX can be con-

structed by arranging all the feature vectors into a block of numbers. It has sizep×n, wherep

is the number feature vectors andn is the number of measurements.

In supervised learning, each feature vector ofX is assigned a target labelt which takes on

{+1,−1} for binary classification and real numbers for regression problems. The labels for

each measurement can then be appended to form a vectort, leading to the training set[X, t],

as a set of examples from which a feature classification method can learn. In problems where

there are many classes, a set of sequential binary classifiers can be used [23]. A functional

mapping f : X → t is then learned and is expected to generalize well to new and unseen test

feature vectors. This is the common property of all the feature classification methods that are

investigated in this work.

7.3 Feature classification methods

This section presents the theory behind the workings of the selected set of feature classification

methods.

7.3.1 The k-nearest neighbor (KNN)

The KNN is the simplest form of feature classification, where a test feature vector is assigned a

majority label of the k-closest training feature vectors. For each test feature vector an indicator
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function valueyi is computed from

yi =
j=k

∑
j=1

t j/k. (7.1)

Heret j is a member of the k-nearest training features. A threshold at zero is then used to decide

on the appropriate label. The constant k is an odd and positive integer. For the simplest case

where the k-value is unity, the classifier is known as the simple nearest neighbor classifier. In

this case, a test feature vector is assigned the label of the training vector that is closest to it. The

commonly used distance metric is the Euclidian distance, which is also used in this work.

The underlying assumption for all the proximity-based classifiers is that feature measurements

are relevant, independent and properly scaled [23]. If these assumptions hold then feature vec-

tors with similar labels are expected to form distinct clusters in the feature vector space. In such

situations, the performance of the KNN is state-of-the-art.

7.3.2 The probabilistic neural network (PNN)

The PNN is similar to the KNN method in that some measure of proximity is employed to

quantify the similarity between two feature vectors. The underlying assumption that a feature

vector should be surrounded by feature vectors of the same label also applies here, otherwise

the feature measurements are irrelevant. The significant difference from the KNN is that a non-

linear measure of similarity is obtained by non-linearly transforming the Euclidian distance via

a kernel matrix K. The elements of this matrix are given by

K(i, j) = e(
−D(xi ,xj )

2

2σ2 )
, (7.2)

where D is the function for computing the Euclidean distance between feature vectorxi andx j ,

andσ controls the degree of smoothness of the decision boundary and therefore the generaliza-

tion to new data[53]. The choice of a kernel function is usually a Gaussian because it is widely

used and is found to be successful for a wide range of problems[53].

The PNN decision function for each test point has the form

yi =
j=p

∑
j=1

t jK(xi ,x j), (7.3)
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where p is the number of points in the training set. This is a Gaussian weighted mean of

the training targetst j to obtain the estimateyi of the test target for each test pointxi . A zero

threshold value is then used to assign the appropriate label. This is similar to the KNN in that,

a mean of the training targets is computed to estimate a label for each test point. However in

the PNN, the whole training set (as opposed to k-training points) is used in the determination of

each test label. Each training point label is assigned a weight which decreases with the distance

from the test feature vector.

For smallσ values, the indicator function of the PNN has a spiky appearance where each local

gaussian function has a purely local influence. In this case, its behavior is similar to that of

the simple nearest neighbor algorithm. For moderately largeσ values, each local gaussian

function has a slightly wider ”sphere of influence”, with the indicator function being smooth

and therefore expected to generalize well. Extremely largeσ values result in linear regressor

where a hyperplane is fitted through the training data.

This classifier has been found to work well for problems with a moderate feature vector dimen-

sion and a large number of training feature vectors that cover the input space[24].

7.3.3 The kernel adatron Support Vector Machine (SVM)

The SVM is similar to the PNN in that it is also a kernel-based classifier. However, in the SVM

the data are non-linearly projected to a higher dimensional feature vector space, where a linear

separator or hyperplane can be used to classify the data more effectively[45]. This non-linear

projection is achieved by using a kernel function in the form of the gaussian at each data point,

as in the PNN case. However, for the SVM, each gaussian is weighted by theα j weights as

shown in equation 7.4:

yi =
j=p

∑
j=1

α jt jK(xi ,x j) (7.4)

This equation shows that the target label of each test feature vector is a weighted sum of the

Gaussian functions at that test point in the input space. This decision function is then thresh-

olded at zero, in order to assign the appropriate label for each test point. Theα weights are

updated via an optimization process where the empirical risk of misclassification is minimized

by maximizing the margin between the decision boundary and the support vectors [45]. This is
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shown in figure 7.1.

An additional regularization parameter C is used to reduce the local distortion of the decision

boundary, caused by the mixing of classes where class separation cannot be achieved by a

reasonably smooth boundary [45]. The parameter C smooths the decision boundary by con-

straining the upper-bound on the magnitude of the largestα weight to C. This has the benefit of

improving the generalization of the classifier to new data.

The SVM has been found to be state-of-art for many problems from a wide range of disciplines

[45], [57], [33]. Its advantages are that it does not require a lot of data as the PNN because of

its data compression feature, where only a subset of about 20% of the original training data set

is retained as the support vectors [24].

Figure 7.1: A support vector illustrating a case where a linear class separator is sufficient.

7.3.4 The regularized least squares classification (RLSC)

The RLSC or simple ”regularization” algorithm is similar to the PNN and the SVM in that the

indicator or decision function is also of the form:

f (x) =
i=p

∑
i=1

citiK(xi ,x) (7.5)
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where the weightsci are determined by least squares regression to minimize the empirical error

on the training data set [53]. In mathematical terms, the following nonhomogeneous set of p

linear equations has to be solved:

(pγI +K)c = t (7.6)

I is the identity matrix,K is the kernel matrix where the diagonal elements are unity andγ

is a user-tunable parameter. LetpγI + K be represented by the matrixP. Then equation 7.6

becomes:

Pc= t (7.7)

The matrixP is square and positive definite and therefore the inverseP−1 exists. It is also

well conditioned provided that thepγ of equation 7.6 is sufficiently large to strengthen the

leading diagonal [53]. In practice, the inverse is replaced by pseudo-inversion where numerical

ill-conditioning problems are anticipated. The solution of equation 7.7 is given by:

c = P−1t (7.8)

where each element of vectorc can be interpreted as the weight of importance for each Gaussian

function of each training point. The smaller it is the less important the training feature vector is

to the classification, and vise-versa. The decision function is then constructed and thresholded

at zero, so that one of the +1,-1 is assigned to each test point.

It is apparent in [53] that the ”regularization” algorithm has been applied successfully in many

different applications. It has been used in both regression and binary classification type prob-

lems. One of the many mentioned modern regression applications is in the synthesis of images

using computer graphics. In modern binary classification type applications, the problem of face

recognition and classification of people by sex from digital images is mentioned. As a result, it

may also be expected to perform well in this rock recognition problem.

7.4 Feature vector dimensionality reduction techniques

Feature classification methods usually perform well in a particular application provided that the

following assumptions are valid:

• The feature measurements are independent.
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• The feature measurements are relevant to the problem.

• There is enough data for the corresponding number of feature measurements.

Feature vector dimensionality reduction techniques are concerned with ensuring that the first

two assumptions are valid. Given a particular data set, these techniques remove redundant

and irrelevant features [23]. The techniques under investigation are the separability index (SI)

optimization and principal component analysis (PCA).

7.4.1 Optimizing the Separability index (SI)

The SI is a figure-of-merit that gives an indication of the degree of class separation for a par-

ticular data set [24]. It was introduced by Thornton as the proportion of the feature vectors

whose target label is the same as that of their nearest neighbors [23]. In formal terms this can

be written as:

SI =

i=p

∑
i=1

(‖ti + t ′i‖+1)mod2

p
(7.9)

wheret ′i is the target label of the nearest neighborx′i of feature vectorxi with target labelti .

For well-separated clusters of oppositely labelled points, the SI assumes a value close to unity.

However as the clusters begin to merge, the SI falls to a point where the probability of each

point having the same as its neighbor is 50% and the SI will be close to 0.50. A grid of points

in the form of a chess-board will have an SI value close to zero.

It appears that subset selection can be achieved by optimizing the SI of a particular data-set.

This can be achieved by evaluating the SI for each subset of features in the set and selecting the

subset that has the maximum SI. This involves exhaustive search where 2n−1 feature sets are

evaluated withn being the dimensionality of the feature vectors. For moderate dimensions of

sizes less than 10, this is a viable option [24].

However for larger dimensions, other search methods in the form of evolutionary algorithms

are more suitable [24]. Evolutionary algorithms are biologically inspired processes which are

based on Darwinian theory of evolution [24]. These methods do not require that all the feature

subsets to be evaluated. Instead a form of guided random search is performed where only
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the promising areas of the search space are explored. However, cautionary measures are also

taken so that premature convergence does not occur[48], where the algorithm is trapped on a

local maximum. An evolutionary algorithm in the form of Baluja’s Probabilistic Incremental

Learning (PBIL) algorithm [2, 3] is used in this work.

7.4.2 Principal component analysis (PCA) via singular value decomposi-

tion (SVD)

Principal component analysis (PCA) is a procedure for extracting the principal directions of a

body of data where there is significant variability [24]. The principal directions are based solely

on the feature vectors and therefore ignore the target labels. As a feature vector dimensionality

reduction technique, PCA eliminates the principal components with insignificant variability.

This can be achieved using singular value decomposition [24] as follows:

Xnormalized= U ·S·VT (7.10)

whereXnormalizedis the normalized matrix of feature vectors. The normalization is performed by

subtracting the mean of each column from the respective column and dividing by the respective

standard deviation. The matrixU has columns which are mutually orthogonal unit vectors.

These are the principal directions arranged such that their significance decreases with increasing

index. The amount of variation for each principal direction is captured in the diagonal matrix

S. The matrixV has its columns as eigenvectors. It can be shown that the diagonal matrixP of

corresponding eigenvalues can be determined fromS using

P =
S2

p−1
. (7.11)

The closer to zero an element on the diagonal ofS, the more it is necessary to remove its

corresponding principal direction. If thek columns ofS with values less than some threshold

are deleted, the following approximation toXnormalizedis obtained:

Y = Uk ·Sk ·VT
k (7.12)

This is called the best rank-k least squares approximation toXnormalized [24]. The matrixY

has fewer features thanXnormalizedand thus feature dimensionality reduction is achieved. How-

ever it must be stated that since PCA does not take into consideration the target labels, it can

eliminate features which are essential to the classification.
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7.5 Methodology

A data set a consisting of 20 ore images taken under varying lighting conditions was assem-

bled. These images are segmented using the rock-scene segmentation algorithm described in

the previous chapter. The complete set of segmented images has a total of 2415 watershed re-

gions which should be classified into rock and non-rock regions. The data is then partitioned as

shown in table 7.1. A supervised machine learning approach is adopted, where the true target

label for each region in the data set is assumed known. The true targets are determined manually

and therefore some human error is expected. The fraction of actual rocks is also shown in the

same table. The test set has an 87.31% fraction of negatives and the main aim is to recognize

these regions and subsequently remove them.

Table 7.1: Data partitioning .

Partition Images Regions Fraction of actual rocks Fraction of non-rocks

Training 10 1117 22.74% 77.26%

Validation 5 644 13.35% 86.65%

Testing 5 654 12.69% 87.31%

Total 20 2415 17.52% 82.48%

7.6 Rock feature extraction

Eleven features are measured and can be broadly divided into rock shape, gray value and gradi-

ent characteristics.

7.6.1 Rock shape

The only feature under the rock shape category is the regional centroid to boundary distance

variance feature. It measures roughly the circularity of the watershed region. Its computation

involves firstly finding the centroid of the region and its boundary pixel coordinatesbi . A vector

of distancesdi from eachbi to the centroid is constructed. Finally, the feature is then computed
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as

f0 =

i=n

∑
i=1

(di −avg(di))2

n−1
. (7.13)

This feature is expected to assume a low value for roughly circular regions and higher values

for irregular regions.

7.6.2 Rock gray value

Seven features have been extracted which depend on rock gray value characteristics. The rele-

vant descriptions are provided below.

Proportion of dark interior pixels

This feature is based on the appearance of the rocks as compared to shadows and fines. In most

ore images, rocks appear brighter than the rest of the material. If a cumulative distribution of a

gray value histogram of the image is computed, it can be concluded with high confidence that

the bottom 10 % constitutes the fines and shadows. The gray value at this level is used as the

threshold for detecting dark areas, in the form of fines and shadows in the image. The feature

is then computed as the ratio of the number of detected dark interior pixels of the region to the

total area of the region. It is expected to be low for rock regions because rocks are expected to

be bright. It is expected to be high for non-rock regions because these regions are expected to

be dark.

Proportion of dark boundary pixels

The same procedure as above is used to obtain the binary image of detected dark areas. How-

ever, instead of measuring from the regional interior, the detected set of pixels is measured on

the boundary of the region. The feature is computed as the ratio of the number of detected pixels

on the boundary to the region perimeter. It is expected to be high for rocks because shadows

are expected on the boundary of the rock. Ideally, it is expected to be low for non-rock regions

because shadows are not expected only on the boundary.
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Proportion of thresholded area to region area

Recall the binary image that was used to derive the centroid and reconstruction methods marker-

sets. The feature calculated here is computed as the ratio of the area of a region in this binary

image to the area of the corresponding watershed region. It is expected to be high for rock

regions and low for non-rock regions.

Average interior gray level

Rocks tend to have brighter gray values as compared to fines and shadows. The feature is

therefore computed as the average gray value on a small disk around the region centroid. It is

expected to be high for a rock region and low for a non-rock region.

Average boundary gray level

This feature is based on the knowledge that the gray value profile of a rock tends to fall off at

the edges. It is computed as the average boundary gray level on the perimeter of the region. It

is expected to be low for rock regions and high for non-rocks.

Boundary and interior gray level absolute difference

This feature is computed as the absolute difference of the boundary and interior average gray

value features. It is expected to be high for rocks and low for non-rocks.

Interior gray level variance

This feature is computed as the variance of the gray values inside the region. It is expected to

be low for rocks and high for non-rocks.

7.6.3 Rock gradient

This category has three features which depend on rock gradients. Their descriptions are given

below.
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Average interior gray level gradient

This feature is based on the knowledge that gray value discontinuities tend to be located at the

edges under ideal lighting conditions. One of the many gradient operators can be used to obtain

the gradient image. The feature is then computed as the ratio of the average gradient value

on a small disk around the regional centroid. It is expected to be low for rocks and high for

non-rocks.

Average boundary gradient

The gradient image is obtained as for the previous feature. The measurement of the average

gradient value is performed on the boundary. This feature is expected to be high for rocks and

low for non-rocks.

Boundary and interior gradient absolute difference

This feature is computed as the absolute difference of the boundary and interior average gradient

feature values. It is expected to be high for rocks and low for non-rocks.

7.6.4 Summary of features

The summary of the features that are extracted is given in table 7.2. In addition each feature is

assigned a symbolfn where n is the feature number.
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Table 7.2: Summary of extracted features.

feature Symbol rock non-rock

Centroid to boundary distance variance f0 high low

Proportion of dark interior pixels f1 low high

Proportion of dark boundary pixels f2 high low

Proportion of thresholded area to region area f3 high low

Average interior gray-value f4 high low

Average boundary gray-value f5 low high

Average interior gradient value f6 low high

Average boundary gradient value f7 high low

Boundary and interior gray value absolute difference f8 high low

Boundary and interior gradient value absolute difference f9 high low

Interior gray value variance f10 low high

7.7 Performance evaluation

The eleven features are measured for each region in the data-set summarized in table 7.1 to

form data matrices[Xtrain, ttrain], [Xvalidation, tvalidation] and [Xtest, ttest]. Before evaluating the

performances of the various classifiers on the data-set, it is necessary to firstly evaluate the

separability of the classes in the feature vector space. The SI is a quick and easy technique for

doing this. The SI of the training set is found to be 78.25 %. This figure can be improved using

feature subset selection methods.

7.7.1 Rock feature dimensionality reduction

Optimizing the SI using the PBIL

The feature vector dimension is eleven and thus exhaustive search is expected to be computa-

tionally expensive since 2047 evaluations will be performed. Therefore evolutionary search in
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the form of Baluja’s PBIL is a viable option. The settings as well as the amount of processing

time it took for a pentium three 1.2GHz processor with 256 MB of RAM to complete a 1000

evaluations are shown in table 7.2.

Table 7.3: PBIL settings.

no. of evaluations Learning rate forgetting factor processing time

1000 0.1 0.01 36 minutes

Applying this algorithm to the training data-set result in the plot of SI versus the number of

evaluations shown in figure 7.2. As can be seen, the SI improves until 600 evaluations after

which it remains at 82.45%. The selected subset of features consists of featuresf0, f1, f4, f5,

f8 and f9.

Figure 7.2: Optimizing the separability index.

In search of reasons as to why the featuresf2, f3, f6, f7 and f11 are not selected, the correlation

matrix presented in table of figure 7.2 is analyzed. The selected subset of features is shown in

vertically shaded columns. The non-shaded columns are the unselected features and the target

correlation values under the label t. It is clear that featuresf2, f6 and f7 should be eliminated

as they are either highly correlated with one of the other features or are weakly correlated with

the target. The elimination off3 and f10 might be justified by checking whether one feature is

a linear combination of the other features. However, this is time-consuming and thus was not

attempted.
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Figure 7.3: The table of correlation coefficients

Removing insignificant principal components

The principal component analysis via singular value decomposition is applied on the normalized

training data set. A scree plot of
√

eigenvalues
p−1 values where p is the sample size is shown in figure

7.4. It is apparent that the first eight principal components should be retained, based on the fact

that the eigenvalues fall off significantly after the 8th principal component.

Table 7.4: SVD-based data transformations and their merits.

Input feature transformation Notation SI

normalized training data Xnormalized 78.25%

best rank-8 approx. to whitened data U8 78.69%

best rank-8 approx to data rotated into principal componentsU8 ·S8 78.25%

best rank-8 approx. to original data U8 ·S8 ·VT
8 78.33%

Table 7.4 shows various attempts at improving the SI by reducing the feature vector dimension-

ality to eight and transforming using PCA via SVD. The highest improvement in SI of 0.44%
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Figure 7.4: A scree plot of eigen values showing where the cut-off threshold should be taken

is achieved when the best rank-8 approximation to data rotated into the principal component

transformation is used. Based on these results it is apparent that PCA is not significantly useful

at improving the separability of the classes in the feature vector space.

7.7.2 Training and testing

The training of classifiers entails finding the parameters that will result in acceptable perfor-

mance levels. The set of classifiers under investigation, consisting of KNN, PNN, SVM and

RLSC, were trained separately on the validation set and the parameter settings were determined.

The settings and the training accuracy on the validation set, are shown in table 7.5.

Testing the classifiers for generalization on the test set results in the generalization results shown

in table 7.6. It appears that the RLSC or ”regularization” algorithm has outperformed the rest of

the feature classification methods. This is followed by the PNN with generalization accuracies

of 91.59%, which outperforms the SVM. Finally, the KNN has the least generalization accuracy

of about 90%.
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Table 7.5: Classifier training results.

Feature classification methodParameter1 Parameter2 Training accuracy

KNN k = 13 none 90.00%

PNN σ = 0.51 none 90.99%

SVM σ = 0.51 C = 100 90.22%

RLSC σ = 0.51 γ = 0.09 90.37%

Table 7.6: ”Accuracy” and ”Precision”

Classifier Time accuracy FPR TPR precision

KNN 1.5 sec 89.91% 6.13% 63.04% 91.13%

PNN 1.5 sec 91.59% 1.22% 42.16% 97.20%

SVM 6.39 sec 90.67% 1.41% 36.17% 96.25%

RLSC 12.03 sec 92.35% 2.28% 55.40% 96.05%

In addition to the accuracies of the classifiers, the overall false positive (FP) and true positive

(TP) rates are also shown in table 7.6. The fraction of rocks in the test set is 12.69% before rock

recognition is applied. This constitutes the total positives (P), while the fraction of non-rocks

of 87.31%, constitutes the total negatives (N). For each classifier the false positive, true positive

rate and precision are computed from the following[15]:

FPR=
FP
N

; (7.14)

FPR=
TP
P

; (7.15)

and

precision=
TP

TP+FP
. (7.16)

As can be seen in table 7.6, the best classifier in terms of a good compromise between TPR, FPR

and processing speed is the simple KNN classifier. This is because it has an acceptable FPR

and precision, and the highest TPR on the test-set, and its computation is almost instantaneous.

However, the TPR and FPR values of a particular classifier determine the operating point of

that classifier on an ROC (Receiver Operating Characteristic) plane [15]. The operating point
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is usually changed by varying some threshold that distinguishes between the two classes (in

binary classification). This results in a curve that specifies the performance of the classifier for

each threshold value. The TPR and FPR values that are reported here, form a single point on the

ROC for each classifier, as shown in figure 7.5. The diagonal line is the ROC curve of a purely

random classifier. For each threshold, this classifier is expected to achieve equal true and false

positive rates. It is random because the likelihood that a positive is true or false is the same for

all the thresholds. Good classifiers should have ROC curves which reside within the top triangle

or above this random line.

Figure 7.5: The ROC space, showing the performances of the four classifiers

In [15], it is argued that classifiers should not be compared based on a single point on an ROC

plane, because the result of the comparison might not be valid at other points. It is also stated

that an ROC curve of a classifier can be generated by varying its decision threshold. In this

work, the decision thresholds were set to zero for all the classifiers. In other words, the decision

functions of equations 7.1, 7.3, 7.4 and 7.5 were compared to a zero threshold, in order to decide

on the most probable label. Clearly, varying this threshold changes the decision boundary of

the classifier, and therefore the TPR and FPR. The threshold is varied between−∞ and+∞.

106



Chapter 7: Rock feature classification for rock recognition

The ROC curve starts at(0,0), where the threshold is+∞. As the threshold is lowered to

the point that the decision function is encountered, more true positives and less false positives

are progressively encountered. This results in the slope of the ROC curve being steeper. As

the global minimum of the decision function is approached, more false positives and less true

positives are progressively encountered, as a result the slope of the ROC curve decreases. At

−∞, both the true positive and false positives are fully detected and therefore both TPR and

FPR assume unity values. The ROC curves of the four classifiers are shown in figure 7.6.

Figure 7.6: The ROC curves of the four classifiers

A perfect classifier should have an ROC curve that passes through the point (0,1). In other

words, there should be a threshold where its false positive and true positive rates are zero and

unity respectively. Any classifier that is closest to this perfect ROC curve is the the best classifier

on the test set. As can be seen in figure 7.6, the KNN is the best classifier on this test-set.

The KNN is further tested on a subset of the images that were used to test the segmentation

for robustness to variations in lighting conditions. The obtained visual results are shown in

appendix A.
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The visual results on the test-set of the KNN and the RLSC are shown in figures 7.5 and 7.6.

Figure 7.7: Test results on test-set images 1-3, showing KNN classified regions on the left and

RLSC classified regions on the right.
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Figure 7.8: Test results on test-set images 4-5, showing KNN classified regions on the left and

RLSC classified regions on the right.

7.8 Summary

The main aim of this chapter was to investigate, implement and apply feature classification

methods to reduce the high false alarm rates of the segmentation algorithm. Four classification

methods in the form of KNN, PNN, SVM and RLSC are selected. All of these classifiers are

data-driven.

Data was collected and feature vector reduction methods in the form of feature subset selection

using SI and PCA via SVD were applied. Optimizing the SI using the PBIL algorithm improved

the SI from 78.25% to 82.45%. The PCA via SVD method was not successful at improving the

separability of the classes in the feature space. This was probably due to its ignorance of the

target classes.
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The classifiers were then trained to determine their optimal parameter settings. Testing for

generalization followed, and the results showed that the RLSC method outperformed all the

other methods in terms of generalization, but that the KNN has the best compromise between

the false alarm rates, true detection rates and speed of computation. The emphasis is placed

on the achievement of the main objective of reducing the FAR on the test-set from 87.31% to

5.35% with the simple KNN classifier.

110



Chapter 8

Results

8.1 Introduction

In this chapter, the overall results of this dissertation are presented. Firstly, projected rock

area distributions at pixel level on test-set images are measured. These measurements are then

compared to projected area distributions of manually segmented images. The primary objective

of this experiment is to evaluate the ability of the system to accurately measure projected rock

area distributions. The secondary objective is to ascertain whether the system has reasonable

outputs by using the hand-segmented data as ground truth.

Secondly, real plant data in the form of sieved size distributions with corresponding video se-

quences are collected. The video sequence is analyzed by the system, and the projected rock-

area distribution is measured and compared to the actual mass fraction distribution of the sieved

data. A difference in the two distributions is expected since the methods are not measuring the

same thing.

Empirical corrections are then made to enable a fair comparison between the two size distri-

butions of the belt-cuts. Both visual and statistical results of the comparisons are presented.

Finally, a summary of the overall results is presented.
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8.2 Measuring projected rock area distributions

In this section the results are presented in terms of two images for visualization purposes, and

the corresponding distributions for qualitative comparisons. One image is the system’s output

and the other is the corresponding manually segmented image. The Human Visual System

(HVS) is capable of locating rocks at a global level, where it is easy to distinguish between rock

and non-rock patches. As a consequence the time consuming process of location of fines is not

attempted. Consequently, the system’s fines locating capability is also switched off to ensure

a fair comparison between automatically and manually determined rock size distributions. As

far as the plotting of the distribution is concerned, a method for creating suitable bin sizes is

required. In this work, bin widths are determined through the use of the Freedman-Diaconnis

rule[29]. The bin widthh is given by:

h = 2(IQ)n−
1
3 (8.1)

whereIQ is the interquartile range andn is the size of the data-set. The projected rock area

distributions are plotted on the same set of axes for comparison purposes. The test-set has five

images, and thus five area distributions of each category (manually or automatically determined)

can be averaged for each bin to obtain a single distribution. Finally, a quantitative comparison

between the average distributions from the manual and automatic method is made.

At this point, the system can measure projected area distributions in terms of the number of

pixels as shown in figures 8.1 and 8.2. As can be seen on this image, the automatically deter-

mined projected area distribution closely matches that of the manually determined distribution.

However, it must be stated clearly that the manually determined distribution is not the actual

distribution of the material in the picture. It is only the approximate projected area distribution

of the rocks which are visible to the human eye.

The projected rock area distributions of the rest of test-set images are shown in figures 8.3 to

8.10. Figure 8.11 shows the average distributions for each category. It can be deduced by

qualitative comparisons that the automatically determined distributions closely match that of

the manually determined projected area distributions. However a quantitative measure of this

match is required.
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Figure 8.1: Test image1 segmented using the KNN-based segmentor is shown on the left and on

the right is the manually segmented version.

Figure 8.2: The corresponding projected area distributions of the automatically and manually

segmented images of test-set image1.

One quantitative measure of difference is obtained by computing the RMS (root mean square)

error between the two distributions. This error measure is found to be 2.37% on this data-set.

Another approach of quantitatively comparing two cumulative distributions is outlined in [49].
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Figure 8.3: Test image1 segmented using the KNN-based segmentor is shown on the left and on

the right is the manually segmented version.

Figure 8.4: The corresponding projected area distributions of the automatically and manually

segmented images of test-set image2.

The process begins by linearizing the two distributions using a Rosin-Rammler transformation,

where the x-axis and the y-axis are transformed using:

xnew= ln(x) (8.2)
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Figure 8.5: Test image1 segmented using the KNN-based segmentor is shown on the left and on

the right is the manually segmented version.

Figure 8.6: The corresponding projected area distributions of the automatically and manually

segmented images of test-set image3.

and

ynew= ln(ln(
100
y

)) (8.3)

It is claimed in [49] that this should lead to a linear relationship between the transformed vari-
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Figure 8.7: Test image1 segmented using the KNN-based segmentor is shown on the left and on

the right is the manually segmented version.

Figure 8.8: The corresponding projected area distributions of the automatically and manually

segmented images of test-set image4.

ables. However, the variable y assumes values less than or equal to unity, and the reciprocation

followed by the amplification results in large numbers for values close to zero. The attenuation

provided by the two natural logarithms is insufficient to compensate for this distortion, and as

116



Chapter 8: Results

Figure 8.9: Test image1 segmented using the KNN-based segmentor is shown on the left and on

the right is the manually segmented version.

Figure 8.10: The corresponding projected area distributions of the automatically and manually

segmented images of test-set image5.

a result the output is non-linear. Based on this fact, an alternative procedure for linearizing is

adopted in this work. This procedure involves transforming only the x-axis as done in equation

8.2. Regression lines are then fitted on the resultant data and the results are shown in table 8.1.
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Figure 8.11: The overall projected rock area distributions on the test-set

It appears that a linear fit is significant for both lines since the F-statistics obtained from the

regression outputs are significantly greater than theF0.005
(1,28) value of 9.28 from the F-tables.

Therefore the linearity assumption is justified.

Table 8.1: Machine vs Manual measurements linear regression results

Parameter Automatic Line Manual Line

b0 -1.2396 -1.1263

95% confidence interval onb0 (-1.4867 to -0.9926) (-1.2831 to -0.9695)

b1 0.5214 0.4923

95% confidence interval onb1 (0.4583 to 0.5846) (0.4523 to 0.5324)

R2 91.09 % 95.77%

Observed F-statistic 286 633.57

The two lines are shown in figure 8.12. Visually, they appear to be very close to each other.

A hypothesis test for slopes, withH0 being the null hypothesis stating that the two slopes are
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Figure 8.12: Regression lines of linearized projected area distributions of the test-set.

similar, and the alternative hypothesisH1 being the two slopes are different is carried out to

investigate this closeness. In formal terms,

H0 : ba = bm (8.4)

H1 : ba 6= bm (8.5)

whereba is the slope of the automatically determined data andbm is the slope of the manual

measurements. The test is a two-sided t-test because the null hypothesisH0 should be rejected

whenba−bm is either significantly negative or positive. The test statistic is given by

t = |ba−bm

sba

| ∼ tn−k−1 (8.6)

wheretn−k−1 is the student’s t-distribution withn− k− 1 degrees of freedom andsb1 is the

standard error onb1. The variables n and k are the number of samples (30) and independent

variables (1) respectively. The standard error on the slopeba is given by

sba =

√
MSE

s2
x(n−1)

, (8.7)

119



Chapter 8: Results

where MSE is the mean square error of the automatic regression line on the data, andsx is the

standard deviation of the independent variablex. The quantitiessx and MSE are determined to

be 0.4262 and 0.0047 respectively. Using these values, the test statistic value is determined to

be 0.960. The 5% significance level for the two-sided test ist0.025
28 = 2.048 which is significantly

greater than the test-static value. It can be concluded that there is insufficient evidence to reject

H0 at the 5% significance level, and therefore the two slopes are deemed to be similar.

A similar approach as the one used for testing for similarity in slopes is adopted for testing for

similarity in constants. The null and alternative hypothesises are:

H0 : ca = cm (8.8)

H1 : ca 6= cm. (8.9)

The test statistic is given by

t = |ca−cm

sca

| ∼ tn−k−1 (8.10)

as before, wheresca is the standard error onca and is computed as

sca =

√
MSE
n−1

. (8.11)

The test-statistic is determined to be 8.7735 and using a significance level of 5%,H0 is rejected.

Therefore based on statistical tests on the similarity of regression lines, the two distributions are

not similar. The discrepancy is at the fine end where the machine generated size distribution

appears to be coarser than the ground truth. The major sources of error are the segmentation

algorithm and the KNN classifier. However, the encouraging outcome is that the visual results

seem to suggest that the two distributions are similar. In addition, expanding the number of

images in the test-set and repeating the statistical tests may confirm this suggestion.

For the purposes of representing distributions in terms of rock mass fraction against size in

mmas is done in the mineral processing industry, a conversion from the representation of the

projected rock area in terms of the number of pixels to squared-centimetercm2 is required. This

conversion can be done using:

Rock Area= Arock · f (ps, r f ,m) (8.12)
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whereArock is the rock area in pixels and f is a function of pixel sizeps, image reduction factor

r f and a magnification factorm [11]. The conversion from area to diameter in cm is achieved

using

Rock diameter= 2

√
RockArea

π
. (8.13)

This is a diameter of a circle with the same area as the projected rock areaRockArea.

8.3 Comparing machine measured size distributions to

sieved data

The previous section tested the system on a test-set of images, and compared the distribution

obtained to the distribution of corresponding manually segmented images. The visual results

show that the two distributions are similar, but quantitative results are not convincing. In this

section a further evaluation of the system on sieved data is carried out. In particular, qualitative

and quantitative comparisons between the automatically measured and the actual sieved rock-

size distribution are carried out.

8.3.1 Methodology

Sieved data was collected in the form of rock-size distributions of 3 and 5 metre belt-cuts with

corresponding video at the Waterval mineral processing plant in Rustenburg. The two rock-

size distributions as obtained from the test-work are shown in figure 8.13. It appears that the

5m belt-cut is finer than the 3m belt-cut at the fine end and coarser at the coarse end. This is

because the first 5 meters of the total belt-cut consists of coarse and fine material, while the last

3 meters consists of only fine material.

Calibration objects in the form of discs with diameters of 64mmwere included with the material

under imaging. The scaling from pixels tocm2 is determined to be one pixel area being approx-

imately equal to one square-centimeter. This allows us to map the diameters from pixel values

to millimeter values. The methodology for performing a comparison between the machine mea-

sured and sieved rock-size distributions involves using the sieved distribution of the 5mbelt-cut
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Figure 8.13: The 5m belt-cut sieve size distribution with the corrected projected rock area distri-

bution of the machine vision system.

for empirical corrections, while retaining the 3m belt-cut for evaluating the effectiveness of the

corrections.

The total belt-cut video sequence has 1084 frames. This is a 1 minute and 12 second long movie

when played at 15 frames per second. The number of frames was reduced to 362 by sampling

at 3 frame intervals to reduce redundancy. The first 227 of the 362 frames belong to the 5m

belt-cut and the rest to the 3m belt-cut. The 5m belt-cut frames were analyzed by the system

and the resultant distribution is shown in figure 8.14. It is apparent that there is a dead-band in

the range between zero and 6mm. This is due to mainly the limited resolution of the cameras

and other factors outlined in [43], such as missing fines.

8.3.2 Dead-band correction

A slightly better approximation of the sieve distribution is obtained by fitting an s-curve at the

fine end to correct for the dead-band problem and missing fines as shown in figure 8.14. Fitting
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a standard ”tail” or s-curve to estimate fines is standard procedure in the comminution industry

[65]. This is done to estimate fine particles which are too small to be measured. The extent

of dead-band correction is determined as the length of the dead-band and is found to run from

the 1st sample to the 19th sample of the machine generated distribution curve. The procedure is

as follows: The machine generated cumulative distribution is firstly converted to a probability

distribution function (pdf); the first 19 samples of the pdf of the sieved 5m belt-cut are inserted

into the first 19 slots (dead-band length) of the machine generated pdf, the modified machine

generated distribution is then normalized to obtain a dead-band corrected pdf, and it is then

converted to a cumulative distribution function(cdf).

This correction is tested on the 3m belt-cut to evaluate its usefulness. The visual results as

shown in figure 8.15 are encouraging.

Figure 8.14: The 5m belt-cut sieve size distribution with the corrected projected rock area distri-

bution of the machine vision system.
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Figure 8.15: The 3m belt-cut sieve size distribution with the corresponding corrected projected

rock area distribution of the machine vision system.

A quantitative comparison can be done using the same technique which is used to quantify the

difference between manual and automatic distribution measurements. Results in table 8.2 show

that the two linear fits are significant and thus the linearity assumption is justified.

Table 8.2: Machine vs sieve distributions linear regression results on the 3m belt-cut data

Parameter Machine Line Sieve Line

b0 0.2917 0.3601

95% confidence interval onb0 (0.2649 to 0.3185) (0.3414 to 0.3788)

b1 0.0959 0.1164

95% confidence interval onb1 (0.0866 to 0.1052) (0.1099 to 0.1229)

R2 94.74 % 98.21%

observed F-statistic 450.5 1368.5
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Figure 8.16: A visual comparison between the machine and sieve regression lines.

A visual comparison of the regression lines shown in figure 8.16, shows that the two lines appear

to be different. But how significant is this difference? A similar procedure as that which was

used to compare two regression in [49] is used here. The results of the t-test are summarized in

table 8.3. It appears that the two slopes are significantly different sinceH0 is rejected at the 5%

significance level. There is no need to go further and test for the similarity of the constants. If

lines have different slopes then they are different. Therefore the two rock-size distributions are

significantly different.

Table 8.3: Hypothesis testing results for similarity between the machine and sieve measured size

distributions.

Test H0 H1 t-stat rejection level

slopes b1machine= b1sieve b1machine6= b1sieve 4.727 5%

constants b0machine= b0sieve b0machine6= b0sieve none none

This result is expected because what is being measured by the two approaches is different.

The sieving method measures the overall distribution of the material while the machine vision
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system measures the projected areas of rocks as well as overlapping rocks on top of the pile. In

[43], they go further and state that assuming that the rocks are anisotropic in shape and that they

lie flat, the machine vision system will tend to measure the major and intermediate diameters.

While the sieve methods will measure the minor and intermediate diameters. Therefore the

machine measured distributions will tend to be coarser than those of the sieve methods as seen

in figures 8.14 and 8.15.

Further corrections in the form of compensating for overestimation due to ”fragment lay” and

under-estimation due to overlapping fragments [43] should be made. The Wipfrag system of

[43] uses statistical transformations which are based on stereology and geometric probabilities

to reduce these errors. The same transformations of their work are attempted from here on.

8.3.3 Stereology-based correction

As seen in the previous section, that simply fitting an s-curve at the fine-end is not sufficient

even though the visual results obtained are encouraging. In this section, other empirical correc-

tions, based on stereology and geometric probabilities, are attempted. In particular, the selected

transformation is based on the following stereological relationship from [43]:

NA =
M
2π

NV (8.14)

whereNA is the number of rocks per unit area on the sectioning plane,NV the number of particles

per unit volume intersected by the sectioning plane and M is the mean curvature of the particles.

Assuming rocks to be spheres whereM = 2πd, the resultant relationship becomes

NA = dNV , (8.15)

where d is the average diameter. Therefore the number of rocks per unit volume for each bin in

the histogram can be determined using:

NV(dave) =
1

dave
NA(dave). (8.16)

wheredave is the average rock diameter of each bin. In [43], a calibration function f is included

to account for overlapping fragments and the effect of missing fines. The new equation is

NV(dave) =
1

davef (dave)
NA(dave). (8.17)
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This appears to be a generalization of equation 8.15, since it is the specific case wheref (dave)

is a set of unity values.

The stereological solution of equation 8.15 is applied prior to applying dead-band correction.

See also the visual results of applying the calibrated stereology correction 8.16 in appendix

A. The extent of dead-band correction is determined on the 5m belt-cut data and its length is

heuristically determined to be 19 samples. The two corrections are then applied in the specified

order and the results on the two belt-cuts are shown in figures 8.17 and 8.18. The results appear

to have improved tremendously.

Figure 8.17: A visual comparison between the sieve and corrected machine size distributions on

the 5m belt-cut data.
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Figure 8.18: A visual comparison between the sieve and corrected machine size distributions on

the 3m belt-cut data.

Treating the 3m belt-cut as the test-set, the next step is the quantification of the apparent im-

provement. The regression results are shown in table 8.4 and the obtained regression lines are

shown in figure 8.19.

Table 8.4: Machine vs sieve distributions linear regression results on the 3m belt-cut data

Parameter Machine Line Sieve Line

b0 0.3617 0.3601

95% confidence interval onb0 (0.3366 to 0.3867) (0.3414 to 0.3788)

b1 0.1135 0.1164

95% confidence interval onb1 (0.1049 to 0.1222) (0.1099 to 0.1229)

R2 96.66% 98.21%

Observed F-statistic 723.9 1368.5
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Figure 8.19: A visual comparison between the sieve and corrected machine regression lines.

Once again the linear fits are significant as shown in table 8.4. After carrying out the hypothesis

tests of similarity between slopes and constants, the results show that at the 5% significance

level the null hypothesis which states that the slopes are the same, is not rejected. Further tests

on the similarity of constants reveal that at the 5% significance level, the null hypothesis which

states that the constants are similar, is not rejected. Based on these results, it can be concluded

that the lines are similar and therefore the sieve and machine measured rock-size distributions

are similar on the 3m belt-cut test data.

Table 8.5: Hypothesis testing results for similarity between the machine and sieve measured size

distributions.

Test H0 H1 t-stat significance level

slopes b1machine= b1sieve b1machine6= b1sieve 0.7022 5%

constants b0machine= b0sieve b0machine6= b0sieve 0.1411 5%
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8.4 Summary

In this chapter, the major results of this dissertation are presented. In particular, the results of

the comparison between the rock-size distributions of manually segmented test-set images and

those measured by the system are presented. Secondly, the system’s performance is evaluated

on a conveyor-belt video sequence with corresponding sieved data.

The visual results of the comparison between the system output and the manual measurements

reveals that the two distributions are similar with an RMS error of 2.37%. However statistical

tests do not strongly agree with this conclusion. These tests highly depend on the availability

of data. Based on the fact that only a handful of images were used as the test-set, test-set could

be extended for a more convincing conclusion. Another source of error is the KNN classifier

since is expected to have an error rate of approximately 10% with a true positive rate (TPR) of

63.04%. This means 36.96% of the actual rocks on the test-set are missed.

The final tests involved comparing the machine measured distributions of a belt video sequence

to the corresponding sieve measured distributions. It was discovered that there are major dif-

ferences between the two distributions as expected. The main differences are the apparent

dead-band, size-distribution overestimation and underestimation. The major sources of error

are the KNN, missing fines, ”fragment lay”, ”overlapping fragments” and camera resolution.

The camera resolution is the primary contributor to the dead-band problem. The secondary

contributor is the effect of missing fines. An s-curve from the 5m belt-cut is used to correct

for the effect of missing fines and dead-band. The overestimation problem is due to ”fragment

lay” while underestimation is due to ”overlapping fragments” [43]. These are corrected using

an ”unfolding” method for reconstructing 3D rock-size distributions from 2D distributions of

rock-sections. After incorporating these correctional measures into the system, the performance

evaluation of the updated system on the 3m belt-cut shows that the two distributions are similar.
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Conclusions and Future work

9.1 Conclusions

Based on the results of this work, the following conclusions can be drawn:

• A machine vision-based instrument for measuring the size distribution of rocks on a con-

veyor is developed. Its main components are a watershed-based segmentation algorithm,

a rock feature classification method in the form of KNN, and a stereology-based correc-

tion scheme for unfolding a 3D rock-size distribution from a 2D size-distribution of rock

sections.

• The visual results of watershed-based segmentation on a test-set of images taken under

varying lighting conditions show that the algorithm is robust to these conditions. How-

ever, high false alarm rates due to lumps of fines appearing as rocks and imperfect lighting

conditions were also obtained.

• Pattern recognition tools in the form of feature classification methods are investigated

for rock recognition with the main objective of reducing false alarm rates. Overall, the

investigated set of methods reduced the FAR significantly with moderate effect on the true

detection rates (TDR). However the most suitable feature classification method in terms

of a good compromise between FAR, TDR on the test-set, and high speed of computation

is the simple KNN.
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• The system is then tested for accuracy on a test-set of images by evaluating and comparing

to size distributions of corresponding manually segmented images. Visual results show

that the two distributions are similar with an RMS error of 2.37%. However statistical

tests showed otherwise.

• The results of a comparison between the measured projected areas and the sieve size

distribution on collected sieve data showed a significant difference between the two dis-

tributions. This difference is due to several sources of error, some of which can be

compensated for. A combination of dead-band and stereology-based correction of the

distributions was applied and tremendous reductions in the difference between the two

distributions were achieved. A statistical decision test revealed that the two distributions

are similar on a 3m belt-cut test data.

9.2 Recommendations for future developments

Based on the results and conclusions of this work, the following recommendations for future

developments can be made:

• Operational lighting conditions are not intensively investigated in this work. A further

investigation on the suitable types of lights as well the geometrical arrangements should

be undertaken.

• A further investigation into the segmentation algorithm’s parameter settings should be un-

dertaken to optimize its performance. In particular, the parameter settings of the iterative

bilateral filter should be given special attention.

• As far as rock feature classification for rock recognition is concerned, the simple KNN

should be used since it performs reasonably well and has a high speed of computation.

• The final rock-size distributions are not as smooth as the sieve rock size distributions,

smoothness can be enforced by using the modified version of the sterelogical transfor-

mation (see appendix B). Further investigations on stereological corrections should be

undertaken.
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• The system cannot run in real-time on a mineral processing plant as the implementation

is not optimized. A more robust implementation of the system should be undertaken so

that more tests can be performed on vast amounts of data.

• A Full 3D surface reconstruction of the rock scene and the subsequent image analysis

thereof can improve the results achieved since accurate quantities such as rock volume

can be computed. A feasibility study of 3D surface reconstruction for rock scenes should

be undertaken.
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Appendix A

Recognition results on experiment images

The following are visual rock recognition results on a subset of images used for testing the

segmentation algorithm under varying lighting conditions. A KNN with a k-value of 13 is used

for recognition.

Figure A.1: Segmentation output of test-image5 and the corresponding rock recognition output.
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Figure A.2: Segmentation output of test-image6 and the corresponding rock recognition output.

Figure A.3: Segmentation output of test-image1 and the corresponding rock recognition output.

Figure A.4: Segmentation output of test-image4 and the corresponding rock recognition output.
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Appendix B

Results of the calibrated stereology method

The calibrated stereology-based correction is applied and the obtained visual results are shown

in figures B.1, B.2, B.3. The distributions are smoother than the distributions of the uncalibrated

method, however there is a larger dissimilarity in the obtained regression lines. As a result, the

statistical tests reveal that the two distributions are dissimilar, as shown in table B.2. Table B.1

shows that the linear fits are significant.

Figure B.1: The 5m belt-cut distribution after a calibrated stereology correction
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Figure B.2: The 3m belt-cut distribution after a calibrated stereology correction

Table B.1: Machine vs sieve distributions linear regression results on the 3m belt-cut data

Parameter Machine Line Sieve Line

b0 0.3898 0.3601

95% confidence interval onb0 (0.3679 to 0.4117) (0.3414 to 0.3788)

b1 0.1031 0.1164

95% confidence interval onb1 (0.0955 to 0.1107) (0.1099 to 0.1229)

R2 96.9% 98.21%

Observed F-statistic 781.6 1368.5

Table B.2: Hypothesis testing results for similarity between the machine and sieve measured size

distributions.

Test H0 H1 t-stat rejection level

slopes b1machine= b1sieve b1machine6= b1sieve 3.7495 5%

constants b0machine= b0sieve b0machine6= b0sieve 3.0549 5%
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Figure B.3: The corresponding regression lines
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Appendix C

The system’s flow of processing

Figure C.1: The flow of processing diagram

Figure C.1 shows the flow of processing diagram, where a greyscale image of the rock scene is

the input to the system. This is fed directly into the rock scene segmentation process to locate

the boundaries of rocks in order to facilitate the measurement of rock size. However, some

of the resultant boundaries are spurious and must therefore be removed. This is performed

via rock recognition by using pattern recognition methods or classifiers. However, it was later
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discovered that fines or smaller particles are missed after these processes are performed. A

fines locator algorithm was then incorporated to solve this problem. The classifier and the fines

locator outputs are then combined using a logical OR operator and the particles on this final

image are measured for the final estimation of rock size distribution.
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