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Abstract	

 
Phytoplankton plays a massive role in the regulation of greenhouse gases, with 

different functional types affecting the carbon cycle differently. The most practical way 

of synoptically mapping the ocean’s phytoplankton communities is through remote 

sensing with the aid of ocean-optics algorithms. 

 

This thesis is a study of the relationships between the Inherent Optical Properties 

(IOPs) of the ocean and the physical constituents within it, with a special focus on 

deriving phytoplankton size classes. Three separate models were developed, each 

focusing on a different relationship between absorption and phytoplankton size classes, 

before being combined into a final ensemble model.  

 

It was shown that all of the developed models performed better than the baseline 

model, which only estimates the mean values per size class, and that the results of the 

final ensemble model is comparable to, and performs better than, most other published 

models on the NOMAD dataset. 
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Chapter	1:		Introduction	

 

1.1. Background	

This chapter serves to provide context to this research project before detailing the 

research aim and objectives. Some background information on phytoplankton and 

remote sensing is provided, with a special emphasis placed on their importance and 

why knowledge of their size distributions is of special interest in ocean ecology. 

 

1.1.1 About Phytoplankton 

Phytoplankton, also known as microalgae, is an extremely diverse set of photosynthetic 

microorganisms adapted to living in open water [1]. They are predominantly single-

celled and are ubiquitous in almost all aquatic habitats, typically confined to the surface 

layer where there is an abundance of sunlight for photosynthesis [2]. Although the exact 

number of phytoplankton species that exist is unknown, with estimates varying wildly, 

it is currently estimated that between 30 000 and 100 000 species may exist [3], [4]. 

Figure 1 illustrates the extreme structural diversity found within phytoplankton species.  

 

 
Figure 1: A selection of phytoplankton species illustrating extreme diversity (not to scale) [5]. 

 

In addition to their structural diversity, phytoplankton species span a massive range of 

sizes, from the smallest unicellular cyanobacteria at around ~1µm3 to the largest 

microcystis having been recorded at ~10Iµm3 [1]. Since phytoplankton cannot be seen 

with the naked eye, it’s difficult to fully appreciate how large nine orders of magnitude 

really is. Finkel et al. [6] have managed to illustrate this by putting it into perspective, 

as can be seen in Figure 2. 

 

Due to the sheer number of species and the large biochemical diversity that exists 

within them, it has been convenient and practical to group phytoplankton into functional 
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types (PFTs). PFTs are an arbitrary grouping of species, typically based on their 

biochemical functions (nitrogen fixers, calcifiers, silicifiers, dimethyl sulphide producers 

[DMS]) or size [7]. 

 

 
Figure 2: Phytoplankton size difference put into perspective [6]. 

 

1.1.2 Phytoplankton Importance 

Interest in phytoplankton has gained momentum in the past two decades with the 

realisation of their role in the global carbon cycle. Despite only accounting for 1-2% of 

the total global biomass, phytoplankton are responsible for fixing some 50 gigatons of 

carbon into organic material through photosynthesis each year [8]. This process is 

known as primary production and the magnitude of this process is on the same order 

as the global total net production by terrestrial plants [9]. Figure 3 illustrates how the 

carbon is absorbed from the atmosphere, via photosynthesis, and transferred to higher 

trophic levels and sequestered in the deep ocean.  

 

As atmospheric CO2 levels increase so too does the amount of dissolved CO2 in the 

ocean. In response to this, phytoplankton have been shown to increase their carbon 

uptake, thereby serving as a dampener of the global greenhouse effect [10]. Not only 

is phytoplankton responsible for producing roughly half of the oxygen on our planet, 

these microorganisms form the basis of the marine food chain as almost everything in 

the ocean, either directly or indirectly, feeds off of them. 

 

In order to understand the driving forces behind phytoplankton, we need to better 

understand the communities or functional types (PFTs) that comprise phytoplankton, 
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each of which differ in a variety of ways, with distinct groups affecting the carbon cycle 

differently [11].  

 

 
Figure 3: Microbial food web illustrating the transfer of carbon [12]. 

 

1.2. Research	Motivation	

Remote sensing of PFTs is an emerging field with high ecological importance. With an 

increase in the amount of publicly available data, possibilities have emerged for 

machine learning techniques to be applied for better modelling of these complex 

systems. It is my personal interest in machine learning, coupled with the global 

importance in understanding phytoplankton size structures, that has motivated me to 

focus this research into the investigation of the relationships between absorption and 

the size structures of phytoplankton. 

1.2.1 Why knowledge of Size is Important 

Given that phytoplankton are such an important role player in regulating greenhouse 

effects, and that they form the basis of the food chain, it is vital that we understand how 

they respond to changes in the environment. It is therefore unsurprising that there has 

been an increase in the number of ocean colour algorithms developed [7]. A large 
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number of these algorithms have been dedicated to working with PFTs due to the 

practicalities offered in working with these groupings [13].  

 

The boundaries of these PFTs can be relatively arbitrary, but with increased academic 

attention the definitions of these functional types are starting to standardise. As the 

boundaries and definitions of functional types become clearer, inter-disciplinary 

research becomes more comparable. 

 

One such PFT that emerged relates to the size of the phytoplankton, as knowledge of 

phytoplankton size is an aspect of particular importance in oceanographic science due 

to the sheer number of biochemical and ecological processes that it influences [14], 

[15]. These processes include, but are not limited to: 

 

• Photosynthesis Efficiency: 
As a cell increases in volume, the surface area to volume ratio decreases and 

as a result the cell becomes less efficient at converting sunlight into energy. 

Numerous studies have shown that chlorophyll-specific productivity such as 

photosynthesis is inversely proportional to the cell size [16].  

 

• Sinking Rate: 
Phytoplankton need to live in the epipelagic zone (the uppermost layer of the 

ocean) in order to convert sunlight and CO2 into energy, but since they have 

no means of locomotion they will ultimately sink to the ocean floor, thereby 

sequestering significant amounts of carbon. Understanding phytoplankton 

sinking rates is therefore of vital importance for understanding carbon fluxes in 

the ocean [17]. Particle sinking rates have been shown to obey Stokes’ law, 

where the sinking velocity is proportional to the radius squared [18]. 

 

• Trophic Interactions and Food Web: 
Phytoplankton is at the bottom of the food chain and as a result there are a 

number of zooplankton and fish species that rely on them as a source of food. 

Typically larger predators will eat larger phytoplankton prey [19], and it has also 

been found that these predators can be selective in their feeding preferences, 

preferring phytoplankton of certain sizes and types [20], [21]. 
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1.2.2 Defining the Causal Relationships 

In order to understand how knowledge of phytoplankton size can be gained, the 

relationships between the optical properties of the sample and the underlying particle 

size information need to be determined. Figure 4 defines some of the relationships 

between the constituents of a water sample and ultimately their optical properties.  

 

 
Figure 4: Causal relationships describing the optical properties of a water sample. 

 

It can be seen that multiple factors influence the absorption signal, and that both direct 

and indirect relationships between the absorption signal and the phytoplankton cell size 

exist. Both Non-Algal Particles (NAP) and Colour Dissolved Organic Matter (CDOM) 

directly influence the absorption signal and therefore influence any model trying to 

estimate particle size. If they are not accounted for directly, they will contribute to the 

overall noise and error of the model. Other than absorption, the other optical property 

that is influenced by particle size is backscatter. Models that incorporate both 

backscatter and absorption should perform better at estimating particle size (both 

phytoplankton and other particles), as compared to a model only utilising absorption 

data.  
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1.3. Hypothesis	

Given the optical absorption signal of a water sample containing phytoplankton cells, 

the size distribution of those cells can be estimated with reasonable accuracy. 

1.4. Aim	

To estimate the percentage of phytoplankton present, per size class (Pico, Nano and 

Micro), from their optical absorption spectra through the use of multiple statistical 

models. 

1.5. Objectives	

1. Develop a model to estimate phytoplankton size class ratios through the use of 

absorption basis vectors and matrix factorisation. 

2. Develop a model to estimate phytoplankton size class ratios through the use of 

estimated pigment concentrations. 

3. Develop a model to estimate phytoplankton size class ratios through the use of 

an empirical parameterisation technique. 

4. Develop an ensemble model, as a composition of the other models, to estimate 

phytoplankton size class ratios. 

1.6. Overview	of	Methods	

Four separate models were developed, each exploiting a different relationship between 

the phytoplankton cell size and their optical properties. All of the models are developed 

against data that is labelled through the use of Diagnostic Pigment Analysis. The first 

model estimates the cell size concentrations by factorising the absorption signal into 

three basis vectors, one per size class, and then calculates the relative abundances 

using these basis vectors.  

 

The second model decomposes the absorption signal into a set of 12 Gaussian bands, 

which are then used to estimate pigments and pigment compositions through non-linear 

regression. The cell size concentrations are then estimated from the derived pigment 

concentrations through the use of Support Vector Regression. 

 

The third model is a parameterised approximation of the absorption signal, where the 

parameters are regressed against the known cell size concentrations and the final 

model is an ensemble model, combining the first three models via Support Vector 

Regression.  
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1.7. Apparatus	

All of the models were developed in Python 2.7, with the use of a Postgres 9 database, 

running on a 2015 MacBook Pro 2,2 GHz Intel Core i7 with 16 GB of 1600 MHz DDR3 

RAM. The following python libraries were used: 

1. Scikit-learn 

2. Numpy 

3. Matplotlib 

4. iPython Notebook. 

 

1.8. Thesis	Structure	

Chapter 2 provides a review of the relevant literature needed to provide context for this 

work. A broad overview of the ocean-optics research landscape, including a history of 

remote sensing and what is currently achievable is provided. This includes an 

introduction to both ocean colour algorithms as well as more general machine learning 

techniques. The final section in this chapter discusses dimensionality reduction and 

parameterisation techniques, why they are important when working with high-

dimensional data, and how they have previously been applied to oceanographic 

datasets. 

 

Chapter 3 deals with the collection and preparation of the datasets used in this 

research. A breakdown of the various types of data (optical, size, pigment) is provided 

along with details on how this data was collected or acquired. Details are supplied on 

how the datasets were prepared, along with the final tally of usable data. This chapter 

also provides a cursory analysis of the underlying structure of the data. Finally, the size 

class labels are calculated, through the use of Diagnostic Pigment Analysis (DPA), so 

that they can later be used in model development. 

 

Chapter 4 represents the main methodology of this paper, where four separate models 

are developed for the estimation of phytoplankton size class (Pico, Nano and Micro), 

from absorption coefficients. Each model has its own aim, method, data and results. At 

the end of the chapter, all of the results across the different models are tabulated, along 

with a table of other published results for comparison. 

 

Chapter 5 provides a summary and an overview of the results obtained in this thesis 

along with suggestions and recommendations for possible improvement. 
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Chapter	2:		Literature	Review	

 

This chapter provides a background to ocean colour algorithms as well as more general 

machine learning techniques that have previously been used in the modelling of 

phytoplankton size classes. A brief introduction to the field of ocean-colour research is 

provided before some of the main techniques are discussed. These techniques focus 

more on the biological and physical relationships between phytoplankton and their 

optical properties. The chapter then moves on to discussing machine learning, both in 

general and how it has been used in ocean colour algorithms, along with some technical 

underpinnings of the more common techniques. The final section in this chapter 

discusses dimensionality reduction and parameterisation techniques, why they are 

important when working with high-dimensional data, and how they have previously 

been applied to oceanographic datasets. 

2.1. Ocean	Colour	Algorithms	

The colour of seawater is directly attributed to the relative concentrations of the optically 

active constituents present in its uppermost layers [22]. This knowledge allowed 

researchers to investigate whether these optical properties could be exploited such that 

information on the underlying constituents could be extracted. The first proof-of-concept 

device attempting to perform such tasks was developed in the early 1980s and was 

called the Coastal Zone Colour Scanner (CZCS) [23]. The creation of this, and other 

such devices, marked the start of the ever-growing field of ocean-colour research. 

These initial approaches focused on calculating the concentration of Chlorophyll-a 

(used as a proxy for biomass) present in the sample. 

 

It was soon discovered that one of the most practical methods for monitoring and 

studying ocean colour was through the use of satellite imagery, as this approach 

provided the highest spatial and temporal resolution for measuring the optical 

properties of the ocean’s surface layer [7]. Since then, a number of approaches have 

been developed for determining phytoplankton community composition from satellite 

imagery. Remote sensing algorithms, however, cannot be developed and validated 

without in situ measurements for comparison and validation.  

 

Before any models can be developed the manner in which light behaves, and is 

influenced by both water and the atmosphere, needs to be understood and accounted 
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for. The atmosphere alone can account for more than 90% of the radiance signal 

measured by satellite-borne radiometers [24].  

 

Once the data from the radiometer has been adjusted to account for atmospheric 

effects, the primary output is either remote sensing reflectance :;<(() or normalised 

water-leaving radiance 12(() . These are known as Apparent Optical Properties 

(AOPs), which can be related to the physical constituents of the water through a series 

of inversions and parameterisations as shown in Figure 5. Where AOPs describe the 

way that light moves through the atmosphere, Inherent Optical Properties (IOPs) 

describe how light interacts with particles inside the water and, as such, cannot be 

measured directly from the satellite. The AOPs are typically converted into IOPs, such 

as absorption and backscatter, so that they can more easily be compared and modelled 

against in situ measurements.  

 
 

Figure 5: Relationship between the physical constituents in the water and how they are related to their 
optical properties, both in the water (IOPs) and in the atmosphere (AOPs). 

 

All of these models, which rely on satellite ocean-colour sensors, are limited by the 

spectral resolution of these sensors, and the current satellites (SeaWiFS, MODIS and 

MERIS) are limited to a relatively small number of wavelengths [25].  This can make it 

particularly difficult to detect the small changes in the spectral slope that are required 

to differentiate between PFTs. 



 

MSc Project Dissertation by David Berliner, 2018  10 

The sensors available for measuring the absorption of in situ samples provide far higher 

resolution than the satellite-based sensors. One such sensor, used in two of the 

datasets of this research, known as the spectral absorption and attenuation sensor 

(AC-S), developed by Sea-bird Scientific, measures absorption and attenuations from 

400nm – 730nm at a resolution of 4nm [26]. The AC-S has a flow through system for 

water to be continuously pumped through the instrument, making it particularly well 

suited to collecting samples on a ship. 

2.1.1. Overview of Relevant Techniques 

Table 1 represents a selection of techniques that are used to estimate accessory 

pigment concentrations as well as phytoplankton size classes and distributions. It is 

important to note that these case studies only represent a small fraction of all the bio-

optical models that have been developed, and that many combinations of IOPs and 

AOPs have been used to estimate the physical and chemical properties of the ocean. 

 
Table 1: Relevant case studies grouped by model output for a number of input types. 

Input Output Case Study 

Absorption 
Accessory Pigments 

Chase et al., 2013 [27] 

Radiance Bracher et al., 2015 [28] 

Radiance 

Phytoplankton 
Size Classes  

(Pico, Nano, Micro) 

Varunan and Shanmugam, 2015 [29] 

Absorption + Radiance Wang et al., 2015 [15] 

Absorption + Pigments Brito et al., 2015 [30] 

Absorption Zhang et al., 2015 [31] 

Chl-a 

Uitz et al., 2006 [32] 

Brewin and Hirata, 2011 [33] 

Hirata et al., 2011 [34] 

Brewin et al., 2010 [25] 

Absorption + Chl-a Wang et al., 2013 [35] 

Backscatter 

Phytoplankton 
Size Distribution 

Slade and Boss, 2015 [36] 

Backscatter Kostadinov, Siegel and Maritorena, 2009 [37] 

Radiance Kostadinov, Siegel and Maritorena, 2010 [38] 

Carbon Kostadinov et al., 2016 [13] 
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2.2. Estimating	Phytoplankton	Size	Classes	

Phytoplankton range nine orders of magnitude in size and any given ocean sample 

could contain a mixture of many species. Trying to determine the exact size distribution 

of all phytoplankton present in the sample is a difficult and impractical task. It is 

therefore common practice to estimate the relative contributions per size class. These 

classes are, however, not very well defined and slight variations exist [39]. One of the 

more common categorisations is the three-size class model (Pico, Nano, Micro), as 

used by Uitz et al. [40], with the boundaries defined as Pico ≤ 0.2μm, Nano 2 – 20μm 

and Micro ≥ 20μm.  

2.2.1. Chlorophyll-a Based Methods 

Chlorophyll-a is the dominant pigment found inside phytoplankton and has distinct 

absorption peaks at roughly 440nm and 675nm. Due to its influence on the absorption 

signal it has been widely used as a means of deriving phytoplankton size structure  [25], 

[32], [33]. These methods typically work on the assumption that Chlorophyll-a 

concentration is proportional to cell size, i.e. larger cells are typically dominant in waters 

with high Chlorophyll-a concentration. This assumption, however, is not always valid in 

local regions such as the East China Sea [15]. 

 

Methods based on Chlorophyll-a alone are very rudimentary and while their simplicity 

gains them some merit, especially in estimating the total biomass present, their ability 

to differentiate between size classes is very limited. These methods are still important 

since many oceanic cruise datasets contain Chlorophyll-a without any other incidental 

data which could be used to estimate phytoplankton size information. 

2.2.2. Accessory Pigments Based Methods 

Phytoplankton contain many different accessory pigments that they use in 

photosynthesis. These pigments are typically measured through a process known as 

High Performance Liquid Chromatography (HPLC). HPLC is the process of passing a 

liquid sample through a solid adsorption material, which interacts with each of the 

constituent particles (pigments in this case) differently, thereby causing different flow 

rates through the adsorption material [41]. By knowing how long each pigment takes to 

pass through the adsorption material allows the absorption reading to be associated 

with the corresponding pigment. Most of the pigments can be detected at 450nm, while 

Chlorophyll-a and its derivatives can be detected at 667nm and Bacteriochlorophyll-a 

at 770nm [42]. Figure 6 shows an example chromatogram from one of the samples 
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taken by [42], showing how the absorbance at 450nm changes over time as a result of 

different pigments taking longer to pass through the adsorption material. 

 

 
Figure 6: HPLC chromatograms from a surface water sample measured at 450nm, taken from [42].  

 

Figure 7 shows the absorption spectra of some of the pigments found within 

phytoplankton, and it can be seen why 450nm in HPLC would be able to detect most 

of the pigments due to the large absorption overlap. The absorption of phytoplankton 

is normally only measured over the photosynthetically active range (PAR) between 

~400nm – 700nm, as light waves longer than 700nm are mostly absorbed by the water 

itself and do not penetrate the water column, and wavelengths in ultra violet (UV) 

spectrum do not play a large role in photosynthesis [43]. Phytoplankton do still absorb 

light within the UV spectrum but excessive exposure can lead to photoinhibition and 

cell damage [12]. 

 

 
Figure 7: Absorption spectra of the different accessory pigments in solution, taken from [44]. 
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Certain diagnostic pigments only occur in certain species and these species may fall 

into specific size ranges, therefore knowledge of the relative concentrations of these 

pigments can be used to infer size information. It was Vidussi et al. [45] who first 

estimated phytoplankton size fractions from diagnostic pigments, a technique now 

known as Diagnostic Pigment Analysis (DPA). Table 2 shows the seven diagnostic 

pigments used and to which taxonomic group and size class they belong. 

 
Table 2: Taxonomic pigments used by [45] to estimate size classes. 

Pigments Taxonomic Significance Size (μm) 

Zeaxanthin Cyanobacteria and Prochlorophytes < 2 

Divinyl Chlorophyll-a Prochlorophytes < 2 

Chlorophyll-b + Divinyl Chlorophyll-b Green flagellates and Prochlorophyll < 2 

19'-Hexanoyloxyfucoxanthin Chromophytes Nanoflagellates 2 – 20 

19'-Butanoyloxyfucoxanthin Chromophytes Nanoflagellates 2 – 20 

Alloxanthin Cryptophytes 2 – 20 

Fucoxanthin Diatoms > 20 

Peridinin Dinoflagellates > 20 

 

DPA was further improved by Uitz et al. [32], where specific weights were associated 

with each of the diagnostic pigments. This technique has undergone minor adjustments 

since then and has been widely adopted by the ocean science community [25], [31]. 

 

Even though DPA is faster than measuring phytoplankton sizes via microscopy, it is 

still a relatively slow process, as samples need to be collected and pigments need to 

be extracted and measured in a lab via HPLC. DPA also suffers from both temporal 

and scale coverage limitations, as the results are only applicable to the area where the 

samples were taken. It is because of these shortcomings that researchers have 

developed absorption-based alternatives, where the optical properties of the water can 

be measured either by continuous flow through systems like the AC-S, or through the 

use of satellite imagery. From these absorption measurements the individual pigment 

concentrations cannot be accurately calculated, as diagnostic pigments have 

overlapping absorption spectra. Without being able to reliably estimate diagnostic 

pigment concentrations from absorption, DPA cannot be used directly in absorption-
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based models. These absorption-based methods, discussed further in section 2.2.3, 

typically exploit some other optical property in order to estimate cell size, but will still 

use data that is labelled via DPA, to be trained against. 

2.2.3. Absorption Based Methods 

Phytoplankton are full of pigments, each absorbing light at some range of wavelengths, 

as shown earlier in Figure 7. When adding up the absorption spectra from each of these 

pigments, the combined and complete pigment spectrum is obtained. This spectrum is 

then distorted, in what is known as the packaging effect, by the fact that pigments are 

found within packets called chloroplasts and that the chloroplasts are packaged inside 

the cell. This packaging effect is highly dependent on cell size and results in a flattening 

of the spectrum [46]. Ciotti et al. [47] found that 80% of the variability in the spectral 

shape could be attributed to the size of the phytoplankton in the sample. It is therefore 

this spectral flattening that most absorption-based models revolve around. 

Phytoplankton cells are not the only particles in the water. Sediment and other detrital 

matter referred to as “colour dissolved material” (CDM) also absorb light within the 

water. Figure 8 show the typical absorption spectra for the various size classes and 

CDM, where the solid lines represent the hyperspectral results estimated by Uitz et al. 

[40] and the dashed lines represent optically weighted [48] specific absorption at Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) bands, within the first optical depth. 

 
Figure 8: Absorption basis vectors for three size classes (Pico, Nano, Micro), where the solid lines 

represent the hyperspectral basis vectors calculated by Uitz et al. [48] and the dashed lines connect 
points that represent optically weighted specific absorption at SeaWiFS bands [31]. 
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The approach taken by Zhang et al. [31] was to make use of pre-calculated basis 

vectors, as shown by the solid lines in Figure 8, to estimate the total contributions of 

these basis vectors in the given absorption signal. The contributions or weightings of 

these basis vectors would indicate the total contributions per size class present. 

Singular Value Decomposition (SVD) was used as the method for factorizing the signal 

matrix into its constituent weightings, and good results were obtained. This technique 

was used in this thesis in Model 1 of Chapter 4, both to calculate basis vectors and to 

estimate size contributions from an absorption signal. 

 

Wang et al. [15] employed a different technique for estimating size classes from the 

absorption signal. Instead of using the absorption basis vectors representing Pico, 

Nano and Micro, they made use of the first three principal components, calculated via 

Principal Component Analysis (PCA), and related these to size classes. This model 

was further evaluated by deriving the phytoplankton specific absorption !*.(() from 

reflectance :;<((), with good results. Even though this technique worked well, it will 

probably not be as widely adopted as the basis vector approach performed by Zhang 

et al. [31] due to the fact that principal components are not as meaningful as basis 

vectors, which relate directly to the absorption spectra of that size class. Zhang’s 

technique is something that is more tangible for biologists to understand, and 

something that can be refined independently. 

 

These techniques describe how pigment or absorption information has previously been 

used to provide information on the size distribution of phytoplankton. In the following 

section a more general background on machine learning techniques is provided, along 

with some of the technical details that underpin the more common techniques. 

2.3. Machine	Learning	Techniques	

Running statistical techniques on a computer, with the aim of making predictions on 

data, is known as Machine Learning [49]. The rise in computational abilities coupled 

with the high availability of data has led to machine learning being found in many fields 

and industries [50].  

 

Typically, machine learning techniques are employed to estimate some continuous 

value (“regression”) or some categorical value (“classification”). Many algorithms exist 

for making these estimations / classifications and choosing the correct algorithm is 

dependent on a number of factors such as the availability of data (both labelled and 
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unlabelled), whether the number of categories is known, and the number of dimensions 

in the dataset [51].  

 

Put simply, machine learning techniques try to quantify the relationship between a 

number of input features (independent variables) and some desired output (dependent 

variables). The relationship between the independent and dependent variables may be 

linear or non-linear, and the correct algorithm needs to be selected accordingly. In 

certain scenarios it is very difficult to know upfront what the relationship is, and different 

algorithms will need to be evaluated in order to see what works best in the given 

context. 

 

In order to determine how well a particular model is performing, a contextually-

appropriate error metric needs to be defined. The measures and consequences of a 

model’s success are highly dependent on the context. For example, making an 

incorrect medical diagnosis is far worse than serving an irrelevant advert on a website. 

Accuracy, however, is not the only characteristic evaluated when choosing the correct 

model. There are other factors, such as the time it takes to train the model, the rate at 

which the model will need to be retrained, and whether the model is capable of being 

retrained incrementally with the introduction of new data. 

 

Many machine learning techniques and models have been used extensively within 

oceanography to estimate the synoptic distribution of phytoplankton cell size from their 

measured optical properties. For example, Brewin et al. made use of Artificial Neural 

Networks (ANN) [52], Li et al. made use of a SVR [53],  and Belgiu and Drăguţ made 

use of Random Forests (RF) [54]. Hu et al. [55] do an in-depth analysis of all of these 

techniques and show that RF based methods perform the best, closely followed by 

SVR and then ANNs, given their datasets and model configurations. It is for this reason 

that a more technical explanation of the internal mechanics of ANNs, SVR and Random 

Forests will be provided. 

2.3.1 Artificial Neural Networks 

ANNs encompass a large class of learning models and algorithms that were originally 

inspired by biological neural networks [56]. An ANN is comprised of layers of 

interconnected artificial neurons, where each layer is connected to the next through a 

weight matrix. These weights, coupled with some non-linear activation function are 

what define the threshold for a given artificial neuron output [51], as shown in Figure 9. 
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Figure 9: Non-linear model of a neuron labelled k [56]. 

 

Without the non-linear activation function the artificial neuron would be nothing more 

than a linear regression model, and the entire network would be reducible to a simple 

linear model. This activation function, often the sigmoid or relu functions, allow the ANN 

to capture complex non-linear relationships within the data. Training is the process of 

finding synaptic weights that improve the accuracy of the ANN. One such approach is 

known as back-propagation, where the synaptic weights are iteratively updated for 

each of the layers. 

 

The ANN in Figure 9 represents a simplistic feed-forward neural network, otherwise 

known as a perceptron [57]. One of the challenging tasks in the design of an ANN is 

determining the number of hidden layers as well as the number of nodes in each layer. 

The greater the number of layers, the greater the complexity the network is capable of 

representing, but so too is the amount of data required and the amount of time it takes 

to train. 

 

Many architectures of ANN exist, for example, Convolution Neural Networks (CNNs) 

are a class of ANN that are made up of feature extractors and classifiers, and are well 

suited to the task of 2D and 3D image recognition [58].  

 

Another popular class of ANN is the Recurrent Neural Network (RNN), which allows 

the output to be fed back into the input of the model. A fundamental difference between 
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RNNs and classical ANNs is the ability of an RNN to process arbitrary length inputs, 

and to generate arbitrary length outputs [58]. This feedback mechanism gives the 

model a form of memory making it well adept to tasks such as language translation, 

where the meaning of a word in a sentence may be contextual.  

 

The Generative Adversarial Network (GAN) is also a widely used architecture that 

consists of a generator model and a discriminator model. The generator model captures 

the distribution of the dataset and generates an output that is representative of the input 

distribution. The discriminator model estimates the probability that the input came from 

the original dataset or from the generator. The training function of the generator is such 

that it is trying to maximize the probability of the discriminator making a mistake [59]. 

GANs are used in a wide variety of applications including dataset generation, image 

upscaling and image generation. 

 

The ANN implemented by Hu et al. for estimating phytoplankton size classes, only had 

1 hidden layer with 10 artificial neurons and performed reasonably well [55]. 

2.3.2 Support Vector Regression 

SVR is a subset of the models known as Support Vector Machines (SVMs), which 

themselves are a set of supervised learning techniques that can be employed for both 

classification and for regression [60]. SVMs attempt to find a hyperplane that best 

separates the data into two classes. The support vectors are the points that fall closest 

to the hyperplane in each class and if removed would alter the position of the 

hyperplane. They are thus important elements in the dataset. The goal of an SVM is to 

maximise the margin between the hyperplane and the nearest point from each class, 

as shown in Figure 10.  

 

 
Figure 10: SVM maximizing the margin between support vectors of two classes [60]. 
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In order to solve the regression case where a continuous output is required, SVM is 

extended. Given a dataset {K = [NO, QO] 	 ∈ 	ℜ" × 	ℜ, V = 1…X},	 the linear function can 

be represented as:  

 Z(N) = 	 〈\, N〉 + /, \ ∈ K, / ∈ ℜ, (2.1) 

 

where	\ represents a weight vector, / represents a bias value and 〈∙,∙〉 denotes the dot 

product in K . Certain constraints are then added to the linear function, where it is 

expressed as the following convex optimisation problem: 

  

minimise 
1
2
‖\‖6 + ab(cO

?

Od-

+ 	cO∗) (2.2) 

 

subject to  e
QO − 	〈\, NO〉 − /	 ≤ 	f +	cO
〈\, NO〉 +	/ − QO ≤ 	f +	cO∗

cO , cO∗ 	≥ 0	
	, (2.3) 

 

where ‖\‖6 represents the Euclidean norm, a term added to minimise overfitting, a >

0 is a constant which helps define the ratio between the “flatness” of Z(N), where f 

defines the radius of the tube within which the regression function must lie, and where 

tolerances of no more than c are allowed. The error in approximation is then measured 

using Vapnik’s so-called f-intensity loss function, described by: 

 

 |c|h 	 ∶=	 j
0,																	VZ	|c| ≤ 	f

		|c| − f, klℎn9\V8n.	 (2.4) 

 

This is visually depicted in Figure 11 where only values outside of the shaded area 

contribute to the loss. 

 

 
Figure 11: Soft margin loss for a linear SVR [60]. 



 

MSc Project Dissertation by David Berliner, 2018  20 

 

This quadratic optimisation problem can be solved through the use of Lagrange 

multipliers such that the linear function can be shown to be: 

 

 
Z(N) =	 〈\, N〉 + / =	b(oO − oO∗)

%

O

〈NO, N〉 + /. (2.5) 

 

This is known as the Support Vector expansion, where oO, oO∗  are introduced 

parameters which need to be learned, and the number of support vectors is equal to 

the number of non-zero oO and 	oO∗.  

 

In order to model non-linear relationships, the linear function in Equation 2.5 can be 

modified through what is known as “the kernel trick”, where a non-linear kernel is 

substituted into the equation. The following represents the generalised kernel 

equivalent: 

 

 Z(N) = 	∑ (oO − oO∗)q(N, Nr)%
O + /, (2.6) 

 

where q(N, Nr) represents the kernel of choice. One such example of a suitable kernel 

is the polynomial mapping: 

 

 q(N, Nr) 	= (s〈N, Nr〉 + 9)t. (2.7) 

 

Another popular kernel, and the one that is used in this research, is the Radial Bias 

Function (RBF): 

 

q(N, Nr) = 	 ℯ,vwx,xyw
z
 (2.8) 

 

This ability to add in non-linear kernels makes SVM and SVR very powerful. Their 

flexibility through kernel choice coupled with the fact that they have very few 

hyperparameters and are guaranteed to reach a global optimum [61], make them a 

very popular choice in many machine learning contexts.  

2.3.3 Random Forests 

Random Forests are another popular machine learning technique, which combine 

bagging and decision trees and can be used for both regression and classification-
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based problems. Multiple decision trees, each of which have been given some subset 

of the data, are combined and averaged in order to get a more stable and accurate 

prediction. This accuracy and robustness, however, does comes at the expense of 

interpretability [62]. 

 

A decision tree has a number of nodes, each of which perform a test on an attribute 

and dictates which branch needs to be followed. There is no requirement for the tree 

to be balanced, although balance typically leads to fewer decisions that need to be 

made, with the most significant tests performed first. The leaf node of the tree 

represents the outcome of the decision tree. 

 

The Random Forest algorithm works by creating N decision trees, where each tree is 

given some subset of the available training data, typically around 80% (although this is 

tuneable). This sampling is “with replacement”, so each decision tree will have some 

overlapping training data. When constructing a tree, instead of searching for the most 

important feature while splitting each node, the best feature is selected from a random 

subset of the features. This results in far greater diversity between each tree, and 

generally results in better overall performance [62]. 

2.4. Dimensionality	Reduction	

Working with high dimensional data can introduce a number of problems when trying 

to develop statistical models. This phenomenon was first described by Richard 

Bellman, who called it “the curse of dimensionality” [63]. As the number of parameters 

describing the input space increases, the volume of the possible output space can grow 

exponentially, requiring an ever-increasing amount of data for a model to have any 

statistical significance. In other words, the sparsity of the data increases with the 

number of dimensions. Another problem that arises from high dimensionality is that it 

becomes increasingly difficult to find a meaningful distance metric. When using 

something like Euclidean distance, for example, the distance between pairs of samples 

becomes increasingly similar as you increase the dimensionality. Even if you managed 

to find enough data to make your model statistically significant and you were able to 

define a meaningful distance metric for training, the computational overhead required 

to train your model might render it intractable. It is therefore common practice to perform 

some sort of dimensionality reduction on the dataset, converting it from a high 

dimensional space to a lower one while trying to maintain as much of the relevant 

information as possible. 
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All dimensionality reduction techniques that are effective on a given dataset rely on an 

underlying assumption that there is redundancy in the given dimensions. That is to say 

that the dataset is expressed in more dimensions than is necessary to fully represent 

it, implying that some mutual information exists between the various dimensions. One 

way of measuring this joint variability, for linearly-related dimensions, is by calculating 

the covariance between each dimension: 

 

 
a{|(N, Q) = 	b

(NO − N̅)(QO − Q~)
X − 1

%

O	d	�

		, (2.8) 

   

where NO and QO are the two variables (dimensions) being compared, with N̅ and Q~ their 

respective means and X the total number of sample points. This can be done for all 

sets of points and put into what is known as a covariance matrix. This matrix is 

symmetrical around the principal diagonal, along which the variance of each variable is 

contained. Even if there is a low covariance between variables, there might still exist 

some non-linear relationship between them that can be exploited for dimensionality 

reduction.  

2.4.1 Junge Slope  

The most commonly used technique for parameterizing marine particle size 

distributions for optical modelling is the power law or Junge distribution [14], [64] as 

defined by the following equation: 

 

 
Ä(Å) = 	Ä� Ç

Å
Å�
É
,Ñ
,	 (2.9) 

 

where Ä(Å) (+,Ö)	is the concentration of particles at diameter Å	(+), and Ä�	(+,Ö) is 

a reference concentration of particles at the reference diameter Å� (typically 2µm) and 

c is the differential slope parameter.  

 

Unlike PCA, these results are a little bit more comparable between different datasets. 

This, coupled with the simplicity of the equation, makes it rather appealing to marine 

scientists. It was only later discovered that phytoplankton have complex shapes with 

variable size distributions, and that the inherent bias in the Junge slope severely limits 

its ability to represent anything more than a monospecific phytoplankton population 

[64]. 
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I applied a Junge slope fit to the available particle size data from the ACE cruise so that 

its performance could be evaluated. The coefficient of determination (also known as 

:6 ) was used as a metric for defining how well the approximated particle size 

distribution (PSD) matched the original. Here :6 is defined by the following: 

 

 :6 	≡ 1 −	 ááàâä
ááãåã

  (2.10) 

 

 çç;#< = 	b(QO − QéO
O

)6 (2.11) 

 

 ççèêè = 	b(QO − Q~O
O

)6, (2.12) 

where QO represents the original signal, QéO the estimated signal and Q~O the mean of the 

original signal.  

 

The final :6 value obtained when applying the Junge slope to the particle size data was 

0.64. This implies that 64% of the variation from the mean is explained by this model. 

Figure 12 shows an example where the Junge slope fits the data reasonably well and 

another example where the approximation is poor. 

 

 
Figure 12: A comparison of a reasonably good (left) and bad (right) Junge slope fit from random size 

samples from the ACE cruise. 

 

2.4.2 Effective Diameter  

Another technique used for parameterising particle size is to take the ratio of particle 

volume to particle area. This metric is known as the Effective Diameter (Å#ëë) and is a 
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technique that was originally used by atmospheric physicists [65]. The quantity Å#ëë 

can be calculated as follows: 

 

 
Å#ëë =

∫ ì
6 ï

ñó(ï)ò�
6

∫ ì
4 ï

6ó(ï)ò�
6

	, (2.13) 

 

where ï is the particle diameter and ó(ï) is the number of particles per unit of volume. 

The integral is taken between the diameters of 2µm and 50µm. 

 

This technique is not meant to be an approximation of the PSD, but rather a metric that 

is useful in describing the optical properties of the particle mixture. This technique has 

been successfully used to infer relationships between the optical properties of 

phytoplankton and a range of size distributions [64]. It is therefore not possible to go 

back from Å#ëë to a size distribution. 

2.4.3 Principal Component Analysis 

Principal Component Analysis (PCA) is a popular factorisation technique that has been 

used in many oceanographic studies [40], [15], [66]. PCA works by projecting the data 

onto a set of orthogonal basis vectors that point in the direction of largest variance [67]. 

This has been illustrated in Figure 13, where the long arrow represents the first principal 

component and the short arrow the second. 

 
Figure 13: An illustration of the two principal components of a random, normally distributed dataset, 

where the length of the arrows represents the unit eigenvector scaled by its corresponding eigenvalue. 
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The principal components in PCA are determined by calculating the eigenvectors of the 

covariance matrix, and then selecting those that have the largest corresponding 

eigenvalues [51]. The arrows in Figure 13 represent the eigenvectors, where every 

sample is represented as some magnitude (eigenvalue) of these vectors. PCA can be 

seen as a factorisation where ö and | are found, such that 

 

 K	 ≡ ö ∙ |õ	, (2.14) 

 

where K represents the original samples, in matrix form, and ö and | represent the 

eigenvalues and eigenvectors respectively. This can be seen as an optimisation 

problem where ö and | are found by solving the following minimisation [62]: 

 

 argmin	∑ (NO¢ − £O ∙O,¢ §¢)6. (2.15) 

	

2.5. Conclusion	

This chapter has discussed how the optical properties of phytoplankton relate to their 

size as well as the statistical techniques employed to exploit this relationship. The 

methods discussed have successfully shown that relationships between optical 

properties and phytoplankton size do exist and that both apparent and inherent optical 

properties can be used. A number of machine learning techniques were then 

presented, with references to existing research in oceanography, where relevant. 

Finally, a number of parametrisation techniques were discussed as a means of 

dimensionality reduction. The following chapter describes the data used in this research 

as well as how it was collected and prepared. 

  



 

MSc Project Dissertation by David Berliner, 2018  26 

Chapter	3:		Data	Acquisition	and	Analysis	

 

This chapter describes what data is required in order to successfully model particle 

size, along with how such data was acquired. All of the data preparation and pre-

processing is described for each of the data types. This chapter also includes some 

basic data analysis, in the form of covariance analysis and PCA, in order to get a better 

understanding of the structure of the data. These linear relationships serve as the basis 

for the development of Model 3, presented in Chapter 4.6. Finally, the size class labels 

are calculated, through the use of DPA, so that they can later be used in model 

development. 

3.1 Data	Requirements	

Both optical and pigment information need to be measured in order to analyse the 

relationships between phytoplankton optical properties and the community size 

structure. Absorption was the only optical property used in this research, with 

wavelengths between 350nm and 750nm used, depending on the measuring 

apparatus. The specific wavelengths measured and used are described in this chapter 

under the relevant dataset sub-heading. In the absence of actual particle size 

information, pigment concentrations were used as a proxy for inferring size classes 

through DPA, covered later. The collected samples needed to be both spatially and 

temporarily aligned across the various sensors, for them to be compared to each other 

and analysed.  

 

The data used in this research was gathered from a number of cruises, namely the 

Tara expedition, the Antarctic Circumnavigation Expedition (ACE) and a combined 

dataset from the National Space Agency (NASA), called the NASA Bio-optical Marine 

Algorithm Dataset (NOMAD) which was compiled from multiple cruises. I was aboard, 

and collected data on, the ACE cruise whereas the rest of the data is publicly available 

and downloadable on the SeaWiFS Bio-optical Archive and Storage System 

(SeaBASS) website [68]. Each of these cruises and datasets are covered in more detail 

in this chapter. 

 

Table 3 gives the complete list of all of the coincident data obtained from all of the 

cruises. This dataset allows for the creation of models that try to infer pigment and 

particle size information from absorption. 
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Table 3: All coincident cruise data used in this thesis. 

Dataset Name Data Type A Intersection Data B Total Samples 

ACE Absorption Pigments 122 

NOMAD Absorption Pigments 241 

Tara Absorption Pigments 156 

 

3.2 Tara	Cruise	Data	

One of the datasets used in this paper comes from the Tara Oceans expedition, a  

3-year long expedition from 2009 to 2013 around the world, covering a 140 000km 

oceanic route spanning the Indian, Atlantic and Pacific oceans. Both pigment and 

absorption data from this cruise can be downloaded from the SeaBASS website [68].  

 

 
Figure 14: Sample collection points from the Tara Oceans cruise. 

 

3.2.1. Data Preparation 

The downloaded dataset contained 976 HPLC pigment samples and 636868 

hyperspectral absorption samples gathered with an AC-S sensor, from 403.9nm – 

733.2nm. Since the pigment samples are taken at specific stations, as shown in Figure 

14, and the absorption samples are collected every minute, some pre-processing had 

to be performed in order to link the pigment samples with the closest absorption 

readings.  
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The downloaded data was in the form of separate Comma Separated Value (CSV) files, 

split by cruise leg and by reading type (absorption or HPLC), totalling 1194 separate 

files. In order to easily interrogate the data and perform spatial queries, the CSV files 

were first imported into a Postgres [69] database. The PostGIS extension [70] was 

installed in Postgres to facilitate working with spatial data such as latitude and longitude 

coordinates. 

 

Figure 15 illustrates the high-level pre-processing steps that were taken to extract the 

spatio-temporally related data. Separate Python scripts were written to import the 

pigment and absorption data into the Postgres database, with the schema shown in 

Figure 16, before a Structured Query Language (SQL) query, Figure 17, was run to 

combine the datasets. 

 

 

 
 

Figure 15: Tara dataset pre-processing flow. 

 

Within the CSV data files there were some inconsistencies around the naming of fields, 

and not all of the fields were always present. It was for this reason that the values of 

each sample were stored as a set of key/values pairs. The Entity Relationship Diagram 

(ERD) in Figure 16 shows this relationship, where the tables “optics_readings” and 

“pigment_readings” are the parent records, and the tables “optics_reading_data” and 
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“pigment_reading_data” are the children records holding the key/value pairs for each 

of the samples. This structure ensured that even if there were inconsistencies in the 

data, all of the data for a sample would still be stored. Once the records had been saved 

into the database it was possible to get a distinct list of all of the fields so that a clean-

up could be performed to ensure that the field names were consistent. 

 

 

 
 

Figure 16: Tara database ERD for storing absorption and pigment data. 

 

Storing the data in this format, instead of in a properly normalised table where all of the 

sample fields are table headings, had its drawbacks when it came to performance and 

query simplicity. The “optics_reading_data” table ultimately had over 100 million 

records in it and was therefore very slow to query. 
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Once all of the fields were cleaned up and made consistent, the SQL query shown in 

Figure 17 was developed to link the pigment data to the absorption data. This query 

would populate the bridge table, “pigment_optics”, with all pigment and absorption 

records that were taken within 1km of each other and were no more than 30 minutes 

apart, and where the sample was only taken in the top 5m of the surface. 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

INSERT INTO pigment_optics  
    (optics_reading_id, pigment_reading_id) 
    SELECT  
        or1.id AS optics_reading_id,  
        pr.id  AS pigment_reading_id  
    FROM pigment_readings pr  
    INNER JOIN  
        (SELECT  
            pigment_reading_id,  
            datetime,  
            location  
        FROM pigment_reading_data d  
        LEFT JOIN pigment_readings r  
            ON d.pigment_reading_id = r.id  
            WHERE  name = 'depth'  
            AND value :: FLOAT <= 5 
        ) AS inn 
    ON pr.id = inn.pigment_reading_id  
    INNER JOIN optics_readings or1  
    ON Abs(Extract(epoch FROM inn.datetime - or1.datetime)) <= 1800  
    AND St_distance(inn.location, or1.location) < 1000; 

 

Figure 17: SQL query for linking spatially and temporally related records. 

 

Due to the high frequency sample rate of the AC-S, in comparison to the pigment 

samples taken, there were typically many AC-S readings for every pigment reading. 

The average value of these AC-S records was taken so that there could be one 

absorption reading for every pigment sample. This data was then exported to a CSV 

file where it was later analysed. 

 

3.3 NOMAD	Data	

NOMAD is a high quality, in situ bio-optical dataset compiled by the “NASA Ocean 

Biology Processing Group” in order to facilitate research in ocean colour algorithm 

development. This dataset is publicly available on the SeaBASS website [68] and 

contains both absorption and pigment data for a number of its samples. Details on how 

this data was collected, cleaned and standardised can be found in the report by Werdell 

and Bailey [71].  
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As this data was already of a useable standard, the only pre-processing required was 

to select the records that had both absorption and pigment information available. A total 

of 241 usable samples were extracted, collected from various parts of the Atlantic and 

Pacific oceans, as illustrated in Figure 18. 

 

 
Figure 18: Used sample collection points from the NOMAD dataset. 

 

The only drawback of this dataset is that, in order to be aligned with the spectral 

resolution of ocean colour algorithms, only 21 nominal wavelengths from 405nm – 

683nm were chosen to represent their absorption data, as shown by Werdell and Bailey 

[71]. Even though this stands in stark contrast to the 401 and 161 wavelengths provided 

by the ACE and Tara cruises respectively, it is a more realistic representation of what 

might be available when working on satellite-based ocean colour algorithms. To this 

end it is important to ensure that the algorithms used in this research are capable of 

obtaining reasonable results even with this low-resolution data, if they are to be of any 

value in satellite-based ocean optics research. 

3.4 ACE	Cruise	Data	

On the 20th of December 2016 I was privileged enough to join the ACE expedition, a 

three-month long research expedition in the Southern Ocean funded by the Swiss Polar 

Institute (SPI). I was a part of the bio-optics team, which was lead and organised by 

David Antoine of Curtain University and the Southern Ocean Climate & Carbon 

Observatory (SOCCO) department of the Council for Scientific and Industrial Research 

(CSIR).  
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3.4.1. Sample Collection 

We were a 4-person team, working 6-hour shifts every day, and collected various 

optical and in situ samples from the Southern Ocean, as can be seen in Figure 19. The 

samples that were of relevance to this project were particulate absorption, HPLC 

pigment and particle size information. Between 500ml and 2000ml of seawater was 

filtered onto 25mm GF/F filters with the use of a vacuum pump. The samples were then 

flash frozen in liquid nitrogen before being stored at -80°C so that they could be 

processed in a lab once ashore.  

 

 
 

Figure 19: Used sample collection points from the ACE cruise. 

 

3.4.2. Lab Processing 

Once the samples had been collected on the cruise they needed to be processed in a 

lab in order to measure the particulate absorption and pigment concentrations. I was 

not involved in this process. The pigments were extracted via HPLC analysis by the 

Laboratoire d’Océanographie de Villefranche-sur-Mer (LOV) in France using the 

analytical procedure as described by Ras, Claustre and Uitz [42].  

 

The particulate absorption data, in the range of 350nm – 750nm at a 1nm resolution, 

was extracted by one of the other team members, Thomas Ryan-Keogh, using the 
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methods outlined by Bricaud and Stramski [72] with further processing done by 

Charlotte Robinson from Curtain University, applying the method defined by Stramski, 

Reynolds and Kaczmarek [73].  

3.5 Absorption	Data	Analysis	

Figure 22 shows the particulate absorption spectra from all three cruises. This is where 

the low resolution of the NOMAD dataset can be seen in comparison to the ACE cruise 

data resolution. The combination of these datasets provided valuable spectral 

variability, covering a large range of absorption values.  

 

 
Figure 20: Particulate absorption of the Tara cruise dataset, where each sample is a different colour. 

 
Figure 21: Particulate absorption of the NOMAD dataset, where each sample is a different colour. 
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Figure 22: Particulate absorption of the ACE dataset, where each sample is a different colour. 

 

Plotting a covariance matrix as a heat map is a convenient way of visually inspecting 

the dataset for joint variability. The lighter the heat map, the higher the joint variability, 

and the better linear dimensionality reduction techniques will work. The absorption data 

is very uniformly distributed with a very high covariance, as seen in Figure 23, where 

the lowest covariance between spectral bands is 94%. 

 

 
Figure 23: A heat map of the covariance matrix of absorption data. 
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3.5.1 PCA Applied to Absorption Data 

When PCA was applied to the absorption dataset, over 99.5% of the variance is 

explained by the first principal component alone. This can be seen in Figure 24, where 

the contributions of the second and third principal components contain very little 

information in comparison to the first. As with the particle size data, the eigenvectors 

contain negative values, as seen in Figure 25. If the eigenvectors are merely used as 

an arbitrary set of vectors that best describe the components of the signal, the negative 

values, although nonsensical, make no difference to the effectiveness of the technique. 

In scenarios where non-negativity is a requirement, an alternative algorithm – Non-

Negative Matrix Factorisation (NMF) – can be applied. This technique is used and 

discussed in Chapter 4, where the basis vectors can be interpreted as a meaningful 

descriptor of particle size contribution. 

 

 
Figure 24: Variance explained by principal components in particulate absorption data. 

 

 
Figure 25: First three eigenvectors of the absorption data. 
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3.6 Pigment	Data	

The pigment data extracted on all of the cruises, via HPLC, provides concentrations of 

the pigments listed in Table 4. Section 2.2.2 provides further information on the HPLC 

process and what the detection wavelengths mean. As shown in later chapters, some 

of these pigments provide valuable information regarding the phytoplankton size, as 

certain pigments are only found in certain species.  

 
 

Table 4: Pigments extracted via HPLC from the ACE cruise. 

Pigment Name Description Detection 
wavelength (nm) 

Chlorophyll-c3   450 

Chlorophyll-c1+c2   450 

Chlorophyllide-a Chlda + Chlda-like 667 

Peridinin   450 

Phaeophorbid-a Phda + Phda-like 667 

19'-Butanoyloxyfucoxanthin   450 

Fucoxanthin   450 

Neoxanthin   450 

Prasinoxanthin   450 

Violaxanthin   450 

19'-Hexanoyloxyfucoxanthin   450 

Diadinoxanthin   450 

Antheraxanthin   450 

Alloxanthin   450 

Diatoxanthin   450 

Zeaxanthin   450 

Lutein   450 

Bacteriochlorophyll-a   770 

Chlorophyll-b   450 

Divinyl Chlorophyll-a   667 

Chlorophyll-a Chlorophyll-a + allomers + epimers 667 

Total-Chlorophyll-a Chla + DV Chla + Chlorophyllid-a 667 

Phaeophytin-a Phytna + Phytna-like 667 

Total-Carotenes Beta-carotene + Alpha-carotene 450 
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3.7 Adding	Size	Labels	

As shown in Figure 2 in the Introduction chapter, phytoplankton range nine orders of 

magnitude in size and, as such, acquiring data that encompasses this full range is very 

challenging. Developing a model that estimates the particle size distribution that covers 

this full range is also very difficult, and impractical if any reasonable resolution is 

required. It is for these reasons that biologists tend to define phytoplankton in terms of 

size classes as opposed to a full distribution. These classes are, however, not very 

well-defined and slight variations of them exist [39]. One of the more common 

categorisations is the three-size class model as used by Uitz et al. [40]. The boundaries 

of the size classes, as shown in Figure 26, were grouped based on average sizes of 

species, as shown by Vidussi et al. [45]. 

 

 
Figure 26: Size ranges of the three phytoplankton size classes (Pico, Nano and Micro). 

 

Certain diagnostic pigments only occur in certain species, and these species fall into 

specific size ranges. The DPA technique was developed for estimating the percentage 

contributions of the three size classes (Pico, Nano and Micro) from their diagnostic 

pigment concentrations [25], [31]. It is unlikely that DPA has been applied to every 

phytoplankton species, but performance of this algorithm has been validated against 

both global in situ pigment datasets and a concurrent co-located satellite matchup 

dataset [25]. The following equations describe the relationships between diagnostic 

pigments and size fractions [40]: 

 

 Z"O>;ê = (1.41[Z£5kN!XlℎVX] + 	1.41[•n9VïVXVX])/\Åß, (3.1) 

 

 Z%$%ê = (0.6[!®®kN!XlℎVX] + 	0.35[´ó] + 1.27[≠ó])/\Åß, (3.2) 

 

 Z*O>ê = (0.86[Øn!N!XlℎVX] + 	1.01[aℎ®	/ + ïV§VXQ®	aℎ®	/])/\Åß, (3.3) 
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 \Åß = 1.41[Z£5kN!XlℎVX] + 	1.41[•n9VïVXVX] + 	0.6[!®®kN!XlℎVX]

+ 	0.35[´ó] 				+ 1.27[≠ó] + 0.86[Øn!N!XlℎVX]

+ 	1.01[aℎ®	/ + ïV§VXQ®	aℎ®	/]. (3.4) 

This was applied to all of the datasets individually in order to assess the distribution of 

size classes across the datasets, as shown in Figure 27. Critical findings were that the 

Tara cruise did not have a high number of Micro particles, and that the ACE cruise had 

very few Pico particles present. The Tara and ACE datasets were therefore combined 

in order to create a dataset that had a more even distribution of size classes. This 

merge was only possible because of the similar sample resolution of the absorption 

data. Having a more evenly distributed dataset ensured that when the absorption basis 

vectors were extracted, they were more representative of the absorption for the given 

size classes. The low sample resolution of the NOMAD dataset prohibited it from being 

merged with Tara and ACE datasets, so it was processed separately. This did not pose 

any problems though, as it was already an evenly-distributed dataset. 

 

 
Figure 27: The percentage contribution of each size class across each of the datasets. 

 

The absorption signals need to be normalised to account for biomass, since it is a first-

order source of variability in the absorption signal. This can be done in one of two ways, 

either by dividing by total Chlorophyll-a or by dividing by the mean absorption [74], [47] 

as shown below: 

 

 
!*∗ (() = 	

!(()
=5ℎ®!	, 

(3.5) 

 

 
!"#$%∗ (() = 	

!(()
< !(() >, 

(3.6) 

 

where =5ℎ®! represents the total Chlorophyll-a and < !(() > the mean absorption. 
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After the size class contributions were calculated per sample, they were overlaid on top 

of their corresponding absorption signals so that the relationship between size and 

absorption can be seen. In Figure 28 and Figure 29 each line represents the absorption 

signal, of a given sample, which has been normalised by the total amount of 

Chlorophyll-a present in the sample, whereas in Figure 30 and Figure 31 the absorption 

signals were normalised by the mean absorption of the signal across all wavelengths. 

Each of the figures has been split into three charts, one for each of the size classes 

Pico, Nano and Micro, where the colour of the line represents the quantity of the given 

size class present in the sample, scaled between 0 and 1. Therefore, lines that are 

redder in colour represent absorption signals of samples containing a high relative 

percentage of the given size class, whereas the bluer lines represent a lower relative 

percentage. 

 
When normalising by total Chlorophyll-a it can be seen that Pico particles have the 

largest absorption coefficients and that Micro particles have the smallest. When 

normalising by the mean absorption, the signals’ shapes change rather drastically, 

becoming tightly grouped. Initially the pattern is the same: Pico particles have the 

largest absorption coefficients and Micro particles the smallest, but at approximately 

520nm an inflection point exists after which the absorption contributions are inverted. 

This observation that normalised absorption varies with size is well documented [35], 

[30] and forms the basis for Model 1 described in Chapter 4.4. 

 

An interesting observation is that the absorption boundaries by size are not nearly as 

well-defined in the Tara and ACE datasets as they are in the NOMAD dataset. This is 

probably because the NOMAD dataset is a specially curated dataset that has been 

selected to represent an even distribution of size classes so that it can be used in ocean 

colour algorithms. 
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Figure 28: Absorption signals normalised by Chlorophyll-a, showing particle size contributions for the Tara 
and ACE datasets. 

 
Figure 29: Absorption signals normalised by Chlorophyll-a, showing particle size contributions for the 

NOMAD dataset. 

 

 
Figure 30: Absorption signals normalised by the mean, showing size contributions for the  

Tara and ACE datasets. 

 
Figure 31: Absorption signals normalised by the mean, showing size contributions for the  

NOMAD dataset. 
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3.8 Summary	of	Data	Used	

Table 5 and Table 6 below show the total number of records available to per cruise as 

well as the number of intersecting records between the absorption and pigment 

datasets. 

 
Table 5: Available absorption data per cruise. 

Dataset Absorption Range Resolution Samples 

ACE 350nm – 750nm 1nm 254 

Tara 403.9nm – 733.2nm 4nm 636868 

NOMAD 405nm – 683nm ~13nm (21 bands) 766 

 

 
Table 6: Available pigment data per cruise along with the total number of records that have coincident 

absorption records. 

Dataset Total Intersecting Samples Total Samples 

ACE 122 193 

Tara 156 221 

NOMAD 241 620 
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Chapter	4:		Phytoplankton	Size	Class	Models	

 

The previous chapter discussed how the data was obtained, cleaned, and how the size 

class labels were estimated via DPA for use in model development. This chapter uses 

the processed data and size labels to generate a series of models that are ultimately 

combined into an ensemble model, the purpose of which is to estimate the size classes 

of phytoplankton from their optical properties. Four different models will be discussed 

in this chapter – three that are capable of independently estimating phytoplankton size 

classes, and the fourth being a final ensemble model that combines the first three to 

produce better results than any one of the models alone. Before the models are 

described in detail, a high-level overview provides context for each one.  

4.1 Model	Training	
All of the models presented need to go through some sort of training stage, an 

optimisation process where the best possible values of the models’ hyperparameters 

are found. Some of the models presented are multi-stage models, and as such have 

more than one training stage – typically where the output of one model is fed into the 

input of the next model. 

 

All datasets were randomised and split into training and test sets of 60% and 40% 

respectively. This particular split ratio was chosen so that there would be enough 

samples in the test set to prevent high model variance even though the total number of 

data samples is low. The models were trained on the training set and then evaluated 

against the test set. This process prevented overfitting of the models, which would have 

otherwise diminished their ability to generalise well outside of the given dataset. This 

split also provides a common dataset against which all models can be evaluated, 

allowing for a direct comparison of results. 

4.2 Model	Evaluation	

Before the details of the models are discussed, it is important to define some metrics 

by which they can be evaluated. The output of all of the models, disregarding 

intermediate outputs for the time being, are the particle size classes Pico, Nano and 

Micro. The size classes are always expressed as a percentage and sum up to 100%. 

In order for the performance of the models to be comparable, the same metrics will be 

used.  
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4.2.1 Baseline Mean Model 

Once a method of evaluating error has been defined it is still not clear what error value 

equates to a useful model, as a Root Mean Square Error (RMSE) alone is not enough 

to determine whether a model is performing well. In order to put the accuracy into 

perspective, a simple baseline model was created. The baseline model simply returns 

the arithmetic mean of the Pico, Nano and Micro values of the given dataset: 

 

 Qé*O>ê =
-
∞
∑ çO

*O>ê∞
O , (4.1) 

 Qé%$%ê =
-
∞
∑ çO%$%ê∞
O , (4.2) 

 Qé"O>;ê =
-
∞
∑ çO"O>;ê∞
O , (4.3) 

 

where Qé*O>ê , Qé%$%ê and Qé"O>;ê represent the mean Pico, Nano and Micro estimates of 

the model and çO
*O>ê, çO%$%ê and çO"O>;ê the Vè. Pico, Nano and Micro records in the 

given training dataset, respectively. 

4.2.2 Root Mean Square Error 

The RMSE is an aggregation of the individual estimation errors into a single statistic 

and can be interpreted as the average prediction error. The output of RMSE is in the 

same units as the value being evaluated, making the results interpretable. The 

drawback of this method is that it cannot be used to compare models that are estimating 

different variables. RMSE is described as follows: 

 

 
:±ç≤ = ≥-

∞
∑ (¥O −	¥µO)6∞
O , (4.4) 

 

where ¥µO is the Vè. estimation and ¥O is the Vè.	value. The square error is averaged over 

all estimations Ä before being square-rooted to bring it back into the original units. The 

values of the size classes that are being estimated represent the normalised relative 

percentage of each of the size classes present in the given sample. Each size class 

contribution is always in the unit interval and the three size class contributions always 

sum to 1. The RMSE is therefore also in the unit interval and  :±ç≤	 × 	100% 

represents the average % that the model was incorrect by. All of the particle size 

models will provide the RMSE for each of the size classes, as well as a combined 

RMSE, which is defined as follows: 
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:±ç≤èêè$? = ≥-

ñ
(:±ç≤*O>ê6 + :±ç≤%$%ê6 + :±ç≤"O>;ê6).  (4.5) 

 

This is only reasonable to assume if the relative errors of each of the size classes are 

normalised into the same interval. In this case the RMSE of each size class is in the 

range of [0: 1] and as such the :±ç≤èêè$?  is also in the range [0:1]. 

4.2.3 Coefficient of Determination 

:6 is a statistical measure of how well the regression line fits the data and is achieved 

by taking a ratio of the explained variation to the total variation as follows: 

 

 :6 = 1 −	∑ (∏π,	∏µπ)z∫
πªº
∑ (∏π,	∏Ωæ )z∫
πªº

, (4.6) 

 

where ¥µO is the Vè. estimation and ¥O is the Vè. value, averaged over all data-points Ä. 

The output is a value between 0 and 100%, where 0% means that the model explains 

none of the variance around the mean and 100% indicates that all of the variance from 

the mean is explained. It is for this reason that the :6 values for the mean models 

provided in the results are 0. 

4.3 Overall	Model	Design	

The final ensemble model is made up of three sub-models, each of which is 

independently capable of estimating the percentage abundance of each size class. 

Even though the final ensemble model achieves accuracies greater than any of the 

individual models, the intention is that these sub-models can be used in isolation.  

 

Each model was designed to exploit a different relationship between the particulate 

absorption spectrum and the underlying size distribution of phytoplankton absorbing 

the light. This required a considerable amount of domain research and resulted in 

models that are meaningful and understandable by oceanographers and biologists. The 

alternative would be to develop some “black box” model like a Deep Neural Network, 

which might achieve a greater accuracy, but the underlying causality and interpretability 

of the model would be lost. This modular approach also allows for improvements in any 

one of the models as research and understanding of these relationships progresses, 

which would improve the overall accuracy of the model. 
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The first model extracts the absorption basis vectors per size class, which can be 

thought of as the “typical” absorption spectra for the given size class. These are later 

used to estimate the ratios of these basis vectors present in a given phytoplankton 

absorption signal, and in so doing, estimating the percentage of each size class 

present. 

 

The second model is a multistage model that first estimates various pigments, through 

Gaussian decomposition followed by non-linear regression, so that the relative pigment 

concentrations (mainly Chlorophyll-a) can be used to estimate the percentage of each 

size class present. 

 

The third model exploits the fact that the first principal component of the phytoplankton 

absorption signals, across all the datasets, explains most of the variability. An empirical 

equation was developed, which can parameterise a given absorption signal into a 

single parameter. This parameter is then used, through the use of SVR using the RBF 

kernel, to estimate the percentage of each size class present. 

 

These three models are then linked together to create a final ensemble model. Figure 

32 shows how these models are arranged and how the data flows through them. 
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Figure 32: Ensemble model, composed of three sub-models, for estimating phytoplankton size classes 

from absorption. 
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4.4 Model	1:	Size-classes	via	Matrix	Factorisation	

The previous chapter showed (Figure 28 to Figure 31) what the typical absorption 

spectra of the different size classes look like. This section extracts these “typical” 

absorption spectra, known as basis vectors, so they may be used for estimating how 

much a given absorption signal is comprised of these basis vectors. The ratios of the 

basis vectors contained within the absorption sample define the ratios of size classes 

present in the sample. It will then be shown, through a technique known as Semi-

Supervised Learning (SSL) that the model’s accuracy can be further improved upon by 

the use of unlabelled data. 

4.4.1 Model 1: Aim 

To develop a model that is capable of estimating phytoplankton size classes from 

absorption data, through the use of derived absorption basis vectors. 

4.4.2 Model 1: Method 

1. Randomly split the data into training and test data sets in a 60% to 40% ratio, 

respectively. This particular ratio was chosen due to the relatively low number 

of samples. 

2. Calculate the absorption basis vectors through NMF. 

3. Improve the basis vectors through semi-supervised learning. 

4. Measure the baseline accuracy through the mean-size estimator. 

5. Measure model accuracy and compare results. 

4.4.3 Model 1: Data Used 

The model was trained and evaluated with data from the combined ACE + Tara 

datasets and for the NOMAD datasets separately. Table 7 gives a breakdown of all the 

data used for training, training via SSL and evaluation. 
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Table 7: All the data used for the training, semi-supervised learning and evaluation of Model 1. 

Dataset Data Type A Used For Intersection Data B Samples 

ACE + Tara Absorption Training Pigments 141 

ACE + Tara Absorption Semi-Sup - 300 

ACE + Tara Absorption Evaluation Pigments 95 

NOMAD Absorption Training Pigments 145 

NOMAD Absorption Semi-Sup - 300 

NOMAD Absorption Evaluation Pigments 98 

 

4.4.4 Model 1: Calculating Basis Vectors  

Given the absorption spectra of a water sample along with the coincident size class 

concentrations, basis vectors can be calculated such that each basis vector represents 

the characteristic absorption signatures of the Pico, Nano and Micro size classes. 

Estimating these basis vectors falls within the training phase of the model, and as such 

only the training data is used to calculate these basis vectors. Figure 33 shows the 

high-level input/output of the model, along with the data dimensions. The details of this 

model and factorisation process are explained in detail below. 

 

 
Figure 33: Factorising the absorption spectra into basis vectors representing the typical absorption 

signals of the given size classes. 
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The core of this model revolves around the fact that absorption is an additive model. In 

other words, in a given sample all of the constituents within the water that absorb the 

light, across the frequency spectrum, can be added together to reveal the total 

absorption by all constituents. This is useful as it can be used to decompose an 

absorption signal into the absorption of either the individual constituents or of some 

grouping thereof. The total absorption of seawater can be broken up as follows: 

 

 !(()èêè$? = 	 !(()2 + !(()*$;, (4.7) 

 

where !(()èêè$?  is the total absorption, !(()2  is the absorption of pure water and 

!(()*$;  represents the total particulate absorption and is made up of the following 

constituents: 

 !(()*$; = 	!(()*. + !(()ø¿¡¬ + !(()%$*, (4.8) 

 

where !(()*. represents the absorption by phytoplankton, !(()ø¿¡¬ the absorption by 

colour dissolved organic matter and !(()%$* the absorption by non-algal particles. The 

absorption by CDOM and NAP is often combined into a single quantity as they both 

absorb light in a very similar manner. This combined value is represented as !(()ø¿¬ 

and approximated as the following exponential, normalised by the absorption at 400nm 

[31]: 

 

 !(()ø¿¬ = 	n,√(ƒ,Ö��). (4.9) 

 

Since the absorption spectra of water is known, it is removed from the absorption data 

upfront. The absorption by phytoplankton is then partitioned into contributions by size 

classes (Pico, Nano and Micro) to yield the following: 

 

 !(()*$; = 	!(()*O>ê + !(()%$%ê + !(()"O>;ê + !(()ø¿¬. (4.10) 

 

This can be represented in a more succinct way, where the total amount that each 

constituent contributes is accounted for as follows: 

  

 
!(()*$; = 	b+O!O∗(()

¬

O

	. (4.11) 
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Here +O  represents the amount of the constituent present and !O∗(() represents the 

absorption by the given constituent at the given wavelength. This can be further 

simplified and represented as a linear system: 

 

 ≈ = ∆∗«	,	 (4.12) 

 

where total absorption can be represented as a column vector with N wavelengths: 

 

 ≈ = 	 [!((-), 	!((6), … , 	!((∞)]õ, (4.13) 

 

and + is represented as a row vector of weights with M elements: 

 

 « = [+-,+6,… ,+¬]. (4.14) 

 

The value ∆∗ represents a set of basis vectors, with shape Ä ×±, that holds the unique 

absorption signature for each of the ±  constituents (size classes) across the Ä 

wavelengths: 

 

 ∆∗ = [≈»∗ , ≈…∗ , … , ≈ ∗ ]. (4.15) 

   

Here each basis vector, represented as a column vector, contains the absorption 

coefficients for a single component at all wavelengths: 

 

 ≈À∗ = 	 [!O∗((-), 	!O∗((6), … , 	!O∗((∞)]õ. (4.16) 

 

The final objective is to calculate the row vector of weights (+), as these weights 

indicate how much of the given constituent is present in the sample, but in order to 

calculate + we first need to solve for ∆∗. By solving for ∆∗, a set of basis vectors is 

acquired which represent the absorption signatures of the three size classes (Pico, 

Nano and Micro). The output of DPA is the fractional composition of the three size 

classes that can be used as the initial values for «. These values along with the 

particulate absorption data are all that is required to calculate ∆∗, if equation 4.12 is 

rearranged to make ∆∗ the subject of the equation: 

 

 ∆∗ = ≈«Ã, (4.17) 
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where «Ã is the Moore-Penrose inverse of «, since « is not square. 

 

The basis vectors are then calculated for the combined Tara + ACE dataset as well as 

for the NOMAD dataset, using both normalisation techniques described in equations 

3.5 and 3.6. These basis vectors are shown in the plots of Figure 34 and Figure 35.  

 

The NOMAD dataset shows a very clear delineation of size classes when normalising 

by total Chlorophyll-a. The combined dataset does not show this separation as clearly 

and has a rather large basis vector representing Micro particles. When normalising by 

the mean absorption, the inflection points at roughly 520nm can clearly be seen in both 

the combined and the NOMAD datasets.  

 

 
Figure 34: Basis vectors representing the specific absorption spectra for the size classes Pico, Nano and 

Micro when normalising by total Chlorophyll-a. The combined dataset is on the left and the NOMAD 
dataset on the right. 

 
Figure 35: Basis vectors representing the specific absorption spectra for the size classes Pico, Nano and 

Micro when normalising by the mean absorption. The combined dataset is on the left and the NOMAD 
dataset on the right. 

 

4.4.5 Model 1: Using the Basis Vectors to Estimate Size 

The next step, after the basis vectors have been identified, is to try and estimate the 

ratio of particle size classes from their absorption signals.  This factorisation is applied 

to the evaluation dataset so that the model’s accuracy can be measured. This process, 



 

MSc Project Dissertation by David Berliner, 2018  52 

shown in Figure 36,  is very similar to the training step, shown in Figure 33, where size 

estimations are now the subject of the formula. 

 

The total concentration of a given particle size class is always positive and therefore a 

non-negativity constraint is added to the factorisation process. This technique is known 

as Non-negative Matrix Factorisation (NMF) and is found by solving the following 

minimisation problem: 

 

 min ∥ ∆∗« − ≈ ∥6,	 

« ∈ ℝ	[0,1]. 
(4.18) 

 

 
Figure 36: Using the derived basis vectors to estimate the contributions per size class of a given 

absorption signal. 

 

 

The value + represents the percentage composition by each size class in the given 

absorption signal, and therefore also requires the following sum-to-one constraint so 

that it can be compared to the size classes labels generated by DPA: 

 
 

b+O

¬

O

= 1. (4.19) 
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4.4.6 Model 1: Improving Performance via Semi-Supervised Learning 

Due to the limited amount of absorption data with size labels (as a result of lacking 

coincident pigment measurements), and the abundant availability of extra unlabelled 

absorption data, Semi-Supervised Learning (SSL) was employed to make use of this 

unlabelled data and further increase the accuracy of the model. 

 

SSL is an iterative process of labelling batches of unlabelled data with the trained model 

and then incorporating this labelled batch into the original training data for the model to 

be trained again. The training data grows with the addition of the newly labelled data, 

but the accuracy is constantly checked against the original 40% that was allocated as 

the test set. This can be repeated until the model converges, assuming it does, and the 

accuracy stabilises [75]. 

 

A number of considerations need to be made when training a model through SSL. The 

batch size chosen is probably the single most important variable to be set. If the batch 

size is too large it can cause the model to end up in a negative feedback loop, causing 

the accuracy to get progressively worse. If the batch size is too small one could run into 

performance issues and might have to retrain the model many times over. The optimal 

batch value for this model was set to 3, which was discovered through a process of trial 

and error. The next consideration is the ratio of labelled to unlabelled data. If the amount 

of data is insufficient the initial accuracy of the model might not be high enough to 

create the positive feedback needed to increase the accuracy of the model. 

 

SSL is not guaranteed to work with all models. An example of where it would not work 

is a simple linear regression model. In this case the estimated labels will fall exactly on 

the fitted line, and as a result the addition of new data points will not move the fitted line 

and improve the model’s accuracy. The reason that SSL can be used to improve the 

accuracy of Model 1 is because NMF can be shown to be the same as “k-means” 

clustering, where each basis vector represents the centroid of the cluster. With the 

addition of new data points the centroid position will constantly shift, and if the 

unlabelled data is from the same distribution as the labelled data, this might help the 

convergence of the centroid position. 

 

Figure 37 and Figure 38 show how the RMSE of the model changes with the 

introduction of data batches. With each additional data batch, the available data for the 

model to use grows by 3 samples.  Initially, the batches consist only of labelled data, 
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until the labelled data runs out, at which point unlabelled data is introduced (the red 

dashed lines in Figure 37 and Figure 38). It is at this point that you would typically stop 

training if you were not using SSL. The batch of unlabelled data is labelled by the 

currently trained model, and included into the training set, before the model is retrained. 

It is at this point that the accuracy of the model is measured against the original test 

data set and the next batch of unlabelled data is introduced. In both the combined ACE 

+ Tara and NOMAD datasets, the same trend can be seen: the addition of unlabelled 

absorption data improves the accuracy of the model. In Figure 37 it appears as though 

the model is performing very well after the first iteration, but at this point the model as 

has only been trained with 3 samples, and still has very high variance, as seen by the 

large jumps in the next couple data batch iterations. 

 

The training error of the model was measured using 10-fold cross validation and is 

represented as “CV error” in the plots. K-fold Cross Validation is the process of 

partitioning the training data into k partitions, such that each partition will be the test set 

on a given iteration, with the remaining data used as the training data. The results of 

the k model-evaluations are then averaged, resulting in less biased results.  

 

The green dashed line represents the “mean model” test error which provides a 

benchmark, i.e. if the test error is not lower than the baseline error then it is not 

performing well. 

 

 
Figure 37: Training and test error of Model 1 when using the combined dataset. 
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Figure 38: Training and test error of Model 1 when using the NOMAD dataset. 

 

4.4.7 Model 1: Results 

The matrix factorisation model has demonstrated that it is possible to factorise the 

absorption signal into a set of basis vectors, which can then be used to estimate the 

concentration of size classes present. It was further demonstrated that SSL can be 

used as an effective method for improving performance in scenarios where unlabelled 

data is available.  

 

 Table 8 shows that, for both datasets, the model is better than the baseline model 

(which only estimates the mean value) and how the error decreases after performing 

SSL. Since the size classes are in the unit interval, :±ç≤	 × 	100% represents the 

average % that the model was incorrect by for the given size class. 

 

The :6 values of the estimated Nano size class was consistently lower than the other 

size classes. These poor results could be attributed to ambiguities discovered with the 

marker pigment Fucoxanthin, which was originally used as a marker pigment for 

Diatoms [45], a species found within the Micro group, but was later found to be a 

precursor to the pigment 19’-Hexanoyloxyfucoxanthin [34], used as a marker pigment 

for Nano phytoplankton. 
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Table 8: Model 1 results including the baseline mean model for comparison. 

 RMSE R2 

Dataset Technique Total Pico Nano Micro Pico Nano Micro 

ACE + Tara Mean Model 0.256 0.281 0.158 0.307 0 0 0 

ACE + Tara NMF 0.21 0.197 0.240 0.19 0.687 0.142 0.694 

ACE + Tara Semi-Supervised 0.199 0.188 0.228 0.179 0.65 0.036 0.669 

NOMAD Mean Model 0.225 0.235 0.154 0.273 0 0 0 

NOMAD NMF 0.206 0.244 0.207 0.157 0.374 0.23 0.731 

NOMAD Semi-Supervised 0.178 0.2 0.173 0.157 0.37 0.075 0.673 
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4.5 Model	2:	Gaussian	Decomposition	and	Regression	
The next model consists of two fundamental stages. The first stage is concerned with 

the estimation of pigment concentrations and the second stage estimates size class 

concentrations from the derived pigment concentrations.  

 

In Model 1 the absorption signal was decomposed into basis vectors per size class, 

and in Model 2 the signal is decomposed into absorption by pigments and NAP, where 

each pigment is represented as a Gaussian band centred at a specific wavelength.  

 

This two-stage model estimates the size class concentrations, first from Chlorophyll-a 

alone, and then from all of the estimated pigments. This is shown in Figure 39 as the 

“Primary Model Flow” and “Extended Model Flow”.  

4.5.1 Model 2: Aim 

To develop a model that is capable of estimating phytoplankton size classes from their 

absorption spectra by estimating specific pigment concentrations that can then be used 

as a proxy to infer size class concentrations. 

4.5.2 Model 2: Method 

1. Split data into training and test data sets in a 60% to 40% ratio, respectively. 

2. Decompose the absorption signal into Gaussian bands at specific wavelengths. 

3. Train a series of non-linear regression models to estimate the Chlorophyll-a and 

accessory pigment concentrations from the Gaussian peaks. 

4. Measure pigment estimation accuracy and show results. 

5. Train an SVR model, using an RBF kernel, to estimate the size class 

concentrations from measured Chlorophyll-a. 

6. Measure size class accuracy and show results. 

7. Combine the models and measure the absorption to size class performance 

(Primary Model Flow). 

8. Update the SVR model to estimate the size class concentrations from all the 

estimated pigment concentrations (Extended Model Flow). 

9. Measure size class accuracy and show results. 

4.5.3 Model 2: Data Used 

The first stage model, which estimates pigment concentrations, and the final end-to-

end evaluation, which estimates size classes from the absorption signal, is trained and 
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evaluated with data from the combined ACE + Tara datasets and for the NOMAD 

datasets separately. The second stage model, that estimates size classes from 

Chlorophyll-a, is trained and evaluated with pigment data gathered on all of the cruises. 

This combined pigment dataset does not require any intersecting absorption readings 

and is therefore much larger. Table 9 gives a breakdown of all the data used in these 

models. 
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Figure 39: Model 2 process flow, estimating size classes by first estimating pigment concentrations.  
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Table 9: All of the data used for training the pigment estimation model and  
the size class concentration model. 

Dataset Data Type A Used For Intersection Data B Samples 

All Pigments Training - 632 

All Pigments Evaluation - 271 

ACE + Tara Absorption Training Pigments 141 

ACE + Tara Absorption Evaluation Pigments 95 

NOMAD Absorption Training Pigments 145 

NOMAD Absorption Evaluation Pigments 98 

 

4.5.4 Model 2: Estimating Pigments from Absorption 

This technique is based on the fact that the constituents of an absorption signal are 

additive and that pigments typically have very specific and narrow absorption spectra. 

The absorption signal is decomposed into a set of Gaussian bands, at predefined 

wavelengths, which are then regressed against known pigment concentrations. This 

technique has been successfully applied in numerous studies [76] and [77], but the 

specific methods described in Chase et al. 2013 are used in this work [27]. 

 

The NOMAD and the combined Tara + ACE absorption datasets were decomposed 

into twelve Gaussian bands. The peak locations and widths of these Gaussian bands 

are based on laboratory measurements of the absorption spectra of the various 

pigments and were further finetuned against in situ data by Chase et al. 2013 [27]. The 

Gaussian peaks and widths are shown in Table 10. 

 

The peak locations are far more specific than the detection wavelengths used in HPLC, 

as shown in Table 4, as this technique relies only on the absorption spectra in order to 

separate out the constituent pigments. HPLC, on the other hand, does not have the risk 

of spectral ambiguity as the pigment present at the sensor is a function of time, as each 

pigment takes a different amount of time to pass through the adsorption material. 

 

Given that the size labels used in this research were estimated through DPA, it would 

be logical to estimate the specific pigments so that the sizes can be calculated through 

DPA. This is, however, unfortunately not entirely possible because of overlap in the 
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absorption spectra for some of these diagnostic pigments, thereby making it impossible 

to estimate all of the pigments from the absorption signal. This is especially apparent 

with the Photoprotective Carotenoids (PPC) and the Photosynthetic Carotenoids 

(PSC). 

 

Table 10: The peak locations and widths of the 12 Gaussian bands used to reconstruct the absorption 
signal, along with the pigments responsible for absorption at these wavelengths [27]. 

Pigments Peak Location (nm) Standard Deviation (nm) 
Chlorophyll-a&c 406 16 

Chlorophyll-a 434 12 

Chlorophyll-b&c 453 12 

Chlorophyll-b 470 13 

PPC 492 16 

PSC 523 14 

Phycoerythrin 550 14 

Chlorophyll-c 584 16 

Chlorophyll-a 617 13 

Chlorophyll-c 638 11 

Chlorophyll-b 660 11 

Chlorophyll-a 675 10 

PPC = !-carotine + "-carotine + zeaxanthin + alloxanthin + diadinoxanthin. 

PSC = 19′-hexanoyloxyfucoxanthin+fucoxanthin+19′-butanoyloxyfucoxanthin+peridinin 

 

The total particulate absorption can be represented by the sum of the absorption of all 

of the pigment Gaussian bands: 

 

 
#$
∗ (') = 	+#,-./00(') +	

23

,

#456(')	, (4.20) 

 
where #$

∗ (') represents the particulate absorption, #,-./00(') the 89:  Gaussian band 

and where #456(') represents the absorption by Non-Algal Particles (NAP), as defined 

by the following exponential:  

 

 #456(') = 	#456(400=>)	?
@A.A2∗(C@DAAEF), (4.21) 

   

where #456(400=>) represents the peak absorption at 400nm and is in effect a scaling 

parameter defining the overall contribution of the NAP signal in the absorption signal.  
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A linear non-negative least-squares algorithm was used to find the best fitting 

magnitudes of the Gaussian bands, using the widths specified in Table 10, and the 

NAP signal for the datasets. An example of a decomposed signal, along with the 

reconstructed signal can be seen in Figure 40.  

 

Figure 40: Absorption signal decomposed into a series of Gaussian bands and NAP function. 

 

In order to estimate the pigment concentrations from their Gaussian amplitudes, the 

following equation describes the exponential relationship between a given gaussian 

band peak and each of the pigments: 

 

 log[#,-./00(')] = 	L,M + N,Mlog	[O8P>?=QM]. (4.22) 

 

This can be rearranged such that the concentration of a given pigment can be solved: 

 

 
O8P>?=QM = R

#,-./00(')

?5ST
U

2/WST

. (4.23) 

 

The values of L,M and N,M define the relationship between the 89: Gaussian peak and 

the X9: pigment concentration. These values are calculated by non-linear regression 

before the estimated pigment concentrations can be found.  
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4.5.5 Model 2: Pigment Estimation Results 

Strong correlations were found between the Gaussian peaks and the key Chlorophyll 

pigments. Chlorophyll-a, the primary pigment used in photosynthesis, was best 

estimated with the Gaussian peaks centred at 617nm and 675nm, with Y3 values of 

0.962 and 0.951 respectively, for the NOMAD dataset. This is almost certainly because 

this is the only pigment that absorbs light at these wavelengths. Chlorophyll-b is the 

pigment with the lowest correlation to any one Gaussian peak, with the highest Y3 value 

of 0.5 for the absorption peak at 470nm. This can be attributed to the high number of 

pigments which absorb light at this wavelength, as seen in Figure 7 of Chapter 2. 

 

When using a combination of peaks to estimate these pigments, the RMSE reduced for 

both the NOMAD and the combined Tara + Ace datasets. As a result, these estimated 

pigments were used in the estimation of size classes in the next stage of the model. 

The complete set of estimated pigment results can be seen in Table 11 and Table 12. 

Since the size classes are in the unit interval, YZ[\	 × 	100% represents the average 

% that the model was incorrect by for the given size class. 

 

Table 11: Single wavelength pigment estimation results with NOMAD on the left and  
the combined dataset on the right. 

  NOMAD Tara + ACE 

Estimated Pigment λ RMSE R2 RMSE R2 

Chlorophyll-a 434 0.725 0.906 0.165 0.924 

Chlorophyll-a 617 0.532 0.962 0.261 0.885 

Chlorophyll-a 675 0.498 0.951 0.172 0.920 

Chlorophyll-b 470 0.075 0.5 0.083 0.000 

Chlorophyll-b 660 0.081 0.268 0.083 0.098 

Chlorophyll-c 638 0.257 0.481 0.121 0.778 

Chlorophyll-c 584 0.201 0.696 0.126 0.735 

PPC 492 0.1 0.797 0.066 0.596 

PSC 523 0.259 0.935 0.195 0.834 
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Table 12: Multi-wavelength pigment estimation results with NOMAD on the left and  
the combined dataset on the right. 

  NOMAD Tara + ACE 
Estimated Pigment λ RMSE R2 RMSE R2 
Chlorophyll-a 406, 434, 617, 675 0.490 0.956 0.150 0.937 

Chlorophyll-b 453, 470, 660 0.061 0.657 0.083 0.119 

Chlorophyll-c 453, 584, 638 0.196 0.712 0.104 0.784 

 

4.5.6 Model 2: Estimating Size from the Derived Pigments 

Once the pigment estimation model was complete these pigments were used to 

estimate the size classes through SVR using an RBF kernel. The value of the 

hyperparameter C, see equation 2.2, was set to 1000 and was chosen based on it 

being the point just before the model begins to overfit, as shown in Figure 41. 

 

Figure 41: Training and test errors of the SVR model against the hyperparameter C, where derived 
pigments are regressed against particle size. 

 

As shown in Figure 39, two approaches were attempted. The primary flow only made 

use of estimated Chlorophyll-a to infer size classes, since Chlorophyll-a is the pigment 

for which the most amount of data is available. This model is simplistic yet practical. 

The extended model flow makes use of the rest of the derived pigments. As expected, 

the results when using all of the estimated pigments are better than when only 

Chlorophyll-a. Table 13 shows the complete set of results for this model, where it can 

be seen that it performs considerably better than the baseline mean model. It is also 

worth noting that this model performs better than Model 1 for both of the datasets. Since 
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the size classes are in the unit interval, YZ[\	 × 	100% represents the average % that 

the model was incorrect by for the given size class. 

 

Table 13: Size class estimation results for Model 2. 

 RMSE R2 

Dataset Technique Total Pico Nano Micro Pico Nano Micro 

ACE + Tara Mean Model 0.256 0.281 0.158 0.307 0 0 0 

ACE + Tara Chlorophyll-a 0.233 0.26 0.168 0.259 0.178 0.101 0.292 

ACE + Tara All Pigments 0.174 0.175 0.158 0.187 0.614 0.09 0.63 

NOMAD Mean Model 0.225 0.235 0.154 0.273 0 0 0 

NOMAD Chlorophyll-a 0.177 0.177 0.146 0.204 0.456 0.18 0.465 

NOMAD All Pigments 0.126 0.128 0.108 0.139 0.723 0.537 0.751 

 

4.6 Model	3:	Empirical	Equation	for	Absorption	

Due to the regular structure in the absorption signal it was decided that a simple 

empirical equation could be used to approximate the signal, as a means of 

dimensionality reduction for training a particle size model. This section describes such 

an equation, which reduces the particulate absorption signal into a single parameter, 

before using the parameter to estimate particle size through the use of SVR, using the 

RBF kernel. 

4.6.1 Model 3: Aim 

To develop a model that is capable of estimating phytoplankton size classes from 

absorption data through the use of an empirical equation and SVR. 

4.6.2 Model 3: Method 

1. Derive an empirical equation capable of parameterising the absorption signal. 

2. Estimate the optimal values for the parameters within the equation via a linear 

least squares approximation, based on the non-intersecting absorption data. 

3. Measure the total explained variance of the approximated signals. 

4. Split absorption/pigment intersection data into training and test data sets in a 

60% to 40% ratio, respectively. 
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5. Train an SVR model, using an RBF kernel, with the calculated signal 

parameters and the known particle sizes, for the training data of both the 

NOMAD and combined datasets. 

6. Measure size class accuracy and show results. 

4.6.3 Model 3: Data Used 

For each of the cruises there are two sets of data used: the intersecting and the non-

intersecting absorption/pigment data. As per the other models, the size classes Pico, 

Nano and Micro are estimated through DPA using the pigment data. The non-

intersecting absorption data is data that has no pigment contribution for the same 

sample. This absorption data is what is used in defining the empirical equation and 

finding the optimal values for the parameters within the equation. 

 

Table 14: All the data used for training the pigment estimation model and the size class 
concentration from Chlorophyll-a model. 

Dataset Data Type A Used For Intersection Data B Samples 

ACE + Tara Absorption Empirical Equation - 344214 

ACE + Tara Absorption Training Pigments 141 

ACE + Tara Absorption Evaluation Pigments 95 

NOMAD Absorption Empirical Equation - 766 

NOMAD Absorption Training Pigments 145 

NOMAD Absorption Evaluation Pigments 98 

 

4.6.4 Model 3: Defining the Empirical Equation 

The PCA results showed that over 99.5% of the variance is captured in the first principal 

component, and as such, it would be a good candidate to base the empirical equation 

on. The eigenvector representing the first principal component was first adjusted into a 

range between [0-1] by applying the following normalisation: 

 

 
`, = 	

a, − min	(a)

max	(a) −min	(a)
	, (4.24) 

 

where a = (a2 …aE), and `,  is the 89:  normalised value. The signal has two distinct 

peaks, at roughly 440nm and 675nm respectively. This is mainly as a result of 
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absorption by Chlorophyll-a, although many other pigments also affect the spectral 

shape of the absorption signal. Based on the aforementioned characteristics of the 

signal, an additive empirical equation was created with the following form: 

 

 i(') = 	L ∙ (#2k2 + #3k3 + 	>'),		 (4.25) 

 
 

k2 =
1

l2no2
3
	?

@(C@	pq)
r

3sq
r

	, (4.26) 

 
 

k3 =
1

l2no3
3
	?

@(C@	pr)
r

3sr
r

	, 

 

(4.27) 

 
where L represents a scaling value of the entire function, equivalent to the eigenvalue 

in PCA and, k2 and k3 represent two Gaussian functions, one for each of the peaks, 

each with their own scaling values #2  and #3 . A linear slope parameter >  was 

introduced to apply a tilt to the Gaussians to introduce a bit of flexibility and reduce the 

bias of the function. Within the Gaussian distributions t2 and t3 represent the positions 

of the peaks and o2
3 and o3

3 control the width of the bell curve. This is the first step in 

parameterising the absorption data signal, but further analysis showed that the number 

of parameters could be further reduced. 

 

This equation was fitted to the signal using a linear least squares technique, so that the 

parameters could be assessed. It was found that the second peak in the signal is only 

27% of the size of the first peak and that the optimal Gaussian width of the first peak is 

∼ 70.71=> while the optimal width of the second peak is ∼ 10=>. The best fitting peaks 

of the two Gaussians were at 430nm and 672nm and not the typical 440nm and 675nm 

peaks of Chlorophyll-a. Substituting these values back into equation 4.25 yields the 

following: 

 

 
#(') = 	L ∙ R?

@(C@DwA)r

2Ax + 0.27?
@(C@yz3)r

3AA + 10@D'U	, 

{' ∈ ℝ:	400 < ' < 700}	. 

(4.28) 

 

This equation was fitted to all of the non-intersecting absorption data, finding the optimal 

value of L in each case, after which Y3 was used to evaluate the performance. The final 

Y3  score was 0.991. This simple equation, with a single variable, is capable of 
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explaining 99% of the variance in the absorption data. Figure 42 shows an example of 

how well the approximated signal matches the original. 

 

 

Figure 42: The empirical equation approximating the first principal component. 

4.6.5 Model 3: Estimating Size Classes 

Once this parameterisation technique had been defined it could be used in the 

estimation of size classes. For each of the absorption signals in the intersection 

datasets the parameter L  from equation 4.25 was estimated and then regressed 

against the particle size values using SVR. 

 

When configuring SVR, the hyperparameter C, refer to equation 2.2, was chosen such 

that the model was not overfit. This can be seen in Figure 43 where the test error begins 

to deteriorate after C=100, even though the training error continues to decrease. It was 

for this reason that a value of 100 was chosen. 

 

Figure 43: Training and test errors of the SVR model against the hyperparameter C, for the empirical 
model, regressed against particle size. 



 

MSc Project Dissertation by David Berliner, 2018  69 

4.6.6 Model 3: Results 

When estimating size classes, the model outperformed the mean model for both the 

NOMAD and the Tara + ACE combined datasets. Far better performance was achieved 

for the NOMAD dataset, with an improvement of 17% over the mean model, whereas 

for the noisier combined dataset a gain of only 9% was obtained. It is shown that the 

empirical model does not perform as well as the previous two models but considering 

the relative simplicity by comparison it is still reasonably effective. 

 

Since the size classes are in the unit interval, YZ[\	 × 	100% represents the average 

% that the model was incorrect by for the given size class. 

 

Table 15: Model 3 results. 

 RMSE R2 

Dataset Technique Total Pico Nano Micro Pico Nano Micro 

ACE + Tara Mean Model 0.256 0.281 0.158 0.307 0 0 0 

ACE + Tara Empirical + SVR 0.234 0.275 0.146 0.258 0.176 0.126 0.304 

NOMAD Mean Model 0.225 0.235 0.154 0.273 0 0 0 

NOMAD Empirical + SVR 0.187 0.191 0.144 0.218 0.325 0.12 0.399 

 

4.7 Model	4:	Ensemble	

The final ensemble model combines the previous three models into a single model. 

This is achieved by combining all of the size estimate outputs from each of the models 

and using them as the input into another SVR model using an RBF kernel. This is done 

in order to increase the overall predictive performance, obtaining better results than 

any one of the models individually. 

 

The optimal value for the hyperparameter C of the SVR algorithm was set to 1 based 

on the overfitting point, as identified in Figure 44. 
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Figure 44: Training and test errors of the SVR model against the hyperparameter C, for the ensemble 
model, regressed against particle size 

 

It can be seen in Table 16 that the ensemble model achieved far better results than any 

of the previous models, for both datasets. The RMSE went down and the Y3 value went 

up, showing a lower error and a better correlation with the true size classes. 

 

Since the size classes are in the unit interval, YZ[\	 × 	100% represents the average 

% that the model was incorrect by for the given size class. 

 
Table 16: Ensemble Model 4 results. 

 RMSE R2 

Dataset Technique Total Pico Nano Micro Pico Nano Micro 

ACE + Tara Mean Model 0.256 0.281 0.158 0.307 0 0 0 

ACE + Tara Ensemble 0.136 0.133 0.129 0.146 0.792 0.234 0.771 

NOMAD Mean Model 0.225 0.235 0.154 0.273 0 0 0 

NOMAD Ensemble 0.12 0.126 0.105 0.127 0.729 0.535 0.784 

 

4.8 Final	Results	

The results of all four models developed in this research can be found in Table 17. It 

can be seen that for both datasets the final ensemble model performs better than any 

of the other models, with a 47% improvement over the Mean Model for both datasets.  
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Table 17: All of the results combined for comparison. 

 RMSE R2 

Dataset Technique Total Pico Nano Micro Pico Nano Micro 

ACE + Tara Mean Model 0.256 0.281 0.158 0.307 0 0 0 

ACE + Tara NMF 0.21 0.197 0.240 0.19 0.687 0.142 0.694 

ACE + Tara Semi-Supervised 0.199 0.188 0.228 0.179 0.65 0.036 0.669 

ACE + Tara Chlorophyll-a 0.233 0.26 0.168 0.259 0.178 0.101 0.292 

ACE + Tara All Pigments 0.174 0.175 0.158 0.187 0.614 0.09 0.63 

ACE + Tara Empirical + SVR 0.234 0.275 0.146 0.258 0.176 0.126 0.304 

ACE + Tara Ensemble 0.136 0.133 0.129 0.146 0.792 0.234 0.771 

NOMAD Mean Model 0.225 0.235 0.154 0.273 0 0 0 

NOMAD NMF 0.206 0.244 0.207 0.157 0.374 0.23 0.731 

NOMAD Semi-Supervised 0.178 0.2 0.173 0.157 0.37 0.075 0.673 

NOMAD Chlorophyll-a 0.177 0.177 0.146 0.204 0.456 0.18 0.465 

NOMAD All Pigments 0.126 0.128 0.108 0.139 0.723 0.537 0.751 

NOMAD Empirical + SVR 0.187 0.191 0.144 0.218 0.325 0.12 0.399 

NOMAD Ensemble 0.120 0.126 0.105 0.127 0.729 0.535 0.784 

 

 

In order to put these results into perspective, Table 18 provides the results obtained by 

other researchers using different techniques. All of these models were run against the 

NOMAD dataset, making the results directly comparable. The only RMSE results that 

perform better than the ensemble model are those of Hu et al. [55], using a Random 

Forest model, which obtains results that are 0.6% better. The R2 results of the ensemble 

model when compared against the other published results show that the Micro size 

class is particularly well represented and attains a better fit than any of the other 

published results. When looking at the R2 results of the Nano size class, only the 

Random Forest results of  Hu et al. [55] perform better. The R2 results of the Pico size 

class perform better than Wang et al. [15] and Zhang et al. [31] but, again, not as well 

as any of the model results of Hu et al. [55]. 
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Table 18: The results of the Ensemble models compared to the results published by other researchers, 
using various techniques for the NOMAD dataset.	

 RMSE R2 

Reference Technique Total Pico Nano Micro Pico Nano Micro 

 Ensemble 0.120 0.126 0.105 0.127 0.729 0.535 0.784 

Wang et al. [15] PCA + Regression 0.124 0.109 0.128 0.134 0.548 0.280 0.608 

Zhang et al. [31] SVD 0.184 0.18 0.17 0.2 0.504 0.270 0.593 

Hu et al. [55] Neural Network 0.134 0.12 0.13 0.15 0.77 0.45 0.72 

Hu et al. [55] Random Forest 0.114 0.10 0.11 0.13 0.82 0.56 0.78 

Hu et al. [55] SVM 0.124 0.11 0.12 0.14 0.80 0.48 0.74 
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Chapter	5:		Conclusion	and	Recommendations		

 

5.1 Conclusion	

This research evaluated a number of techniques for the estimation of phytoplankton 

size classes (Pico, Nano and Micro) from their Inherent Optical Properties. Some of the 

data used was collected on the ACE cruise, while the other datasets – NOMAD and 

Tara – are publicly available and were obtained online. These datasets contain both 

absorption data and coincident pigment data. The true size classes of the samples were 

not measured directly but were estimated through a technique known as Diagnostic 

Pigment Analysis. 

 

As a precursor to the model development, the structure of the absorption and particle 

size data was analysed. Through the use of a covariance matrix it was shown that the 

absorption data is highly structured, and that dimensionality reduction techniques would 

work well on it. It was then confirmed, through the use of PCA, that the dimensionality 

could be drastically reduced, with 99% of the variance explained by the first principal 

component alone. The highly structured nature of the absorption data led to the 

development of an empirical equation, modelled against the first principal component, 

that obtained an Y3	score of 0.991 with a single scaling parameter. 

 

Four models were then developed in order to estimate the phytoplankton size classes, 

as provided by DPA, from the absorption data. It was shown that all of the developed 

models performed better than the baseline model, which only estimates the mean 

values per size class. Additionally, the results of the final ensemble model are 

comparable to, and perform better than, most other published models on the NOMAD 

dataset. 

 

The first model showed that a set of basis vectors, representing the typical absorption 

signal per size class, could be used to decompose an absorption signal into a set of 

relative abundances for each of the size classes. Although this technique worked 

relatively well, and showed an RMSE improvement of 18% over the baseline model for 

the combined dataset and 8% for the NOMAD dataset, it did not perform as well as 

some of the other models. It was then shown that the accuracy of the model could be 

improved upon by using SSL, with the addition of unlabelled data. The improved model 
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showed an RMSE improvement of 22% over the baseline model for the combined 

dataset and 21% for the NOMAD dataset. 

 

The second model made use of Gaussian decomposition to first estimate the relative 

concentrations of pigments present in the sample, before utilising SVR to estimate size 

class concentrations. When only making use of Chlorophyll-a for the estimation of size 

classes, the model’s performance was poorer than when all of the derived pigments 

were used. Other than the final ensemble model, this model performed the best with 

an RMSE improvement of 32% over the baseline model for the combined dataset and 

44% for the NOMAD dataset. 

 

The third model made use of an empirical equation, where the absorption was 

parameterised into a single value. This value was then modelled, through the use of 

SVR, to the particle size as provided by DPA. Even though this parameterisation 

captures 99.1% of the variance in the absorption signal, it was only capable of an RMSE 

improvement of 9% over the baseline model for the combined dataset and 17% for the 

NOMAD dataset. These results are not as good as the others but considering the 

simplicity of the model it may still have practical applications. 

 

The fourth and final model combined all of the previous models into an ensemble 

model, where the outputs of the other models are used as the input to SVR. This model 

performed very well and has results comparable with the best published techniques. 

An RMSE improvement of 47% over the baseline model was achieved for both the 

combined dataset and the NOMAD dataset. 

 

This thesis therefore shows that particle size and pigment information can be inferred 

from the particulate absorption signal, and that the results obtained are comparable to 

other published results. 

 

5.2 Recommendations	for	Future	Work	

I believe that there is a lot of potential for spatio-temporal models, developed using 

Bayesian networks or something similar. These models could show how phytoplankton 

numbers or sizes change with respect to space and time. These probabilistic-type 

models could be very valuable for inferring information in areas of the ocean where 

readings do not exist, but where adjacent records do. 
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Some of the variables that were not considered in this thesis but that do affect the 

absorption signal are temperature and light exposure. All of the models in this paper 

would be improved if these variables could be included. 
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