A Distributed, Object Oriented

Architecture for Pattern Analysis

Brian Shand

Submitted to the Department of Electrical Engineering,
University of Cape Town, in partial fulfilment of the requirements
for the degree of Master of Science in Engineering.
September 1999

To Olivia

Declaration

I, Brian Ninham Shand, declare that this dissertation is my own work. It is being
submitted for the degree of Master of Science in Engineering at the University of
Cape Town. It has not been submitted before for any degree or examination at this or

any other university.

B. N. Shand

Abstract

This thesis presents a new distributed object architecture that allows pattern analysis

to be shared among many computers.

Techniques of pattern recognition, probabilistic decision making, and distributed com-

puting are examined as foundations for the architecture.

The architecture employs both active and passive object migration between computers
on a network. It is also fully object oriented, allowing objects to dictate novel migration
strategies independently. Another important feature of this architecture is a new tech-
nique which allows objects to be truly distributed, by enabling them to reside in many

places simultaneously.

The advantages of this distributed architecture include lower computing costs, enhanced
fault tolerance, and fast real-time information processing. A battery of tests was devel-

oped to confirm that the architecture performed according to its specifications.

The ‘Smart Building’ is an application designed to demonstrate the system. It uses
distributed objects to reconstruct workers’ behaviour from movements sensed by cameras
inside its rooms. Distributed objects in the ‘Smart Building’ mirror reality: as people
in the building move between rooms, distributed objects migrate between computers.
Thus, the ‘Smart Building’ takes advantage of the geographical proximity of interrelated

data sources, to enhance efficient distributed pattern analysis.

vii

Acknowledgements

I would like to thank the following for their contribution towards this thesis.
Professor Gerhard de Jager, my supervisor, for his enthusiasm and guidance.
DebTech and the National Research Foundation for financial support.

The UCT Digital Image Processing group for their friendly encouragement.

My family for their unflagging interest.

Sun and Java are registered trademarks of Sun Microsystems, Inc.

Microsoft, C++, Win32, Windows and Windows NT are registered trademarks of

Microsoft Corporation.

ix

Contents

Declaration

Abstract

Acknowledgements

I Introduction and Literature Review

1 Introduction

2 Pattern Recognition

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Context Free Grammars
Prolog
Statistical Pattern Recognition
Neural Networks
Stochastic Search
Fuzzy Logic and Expert Systems . . .

Conclusion.

3 Probability

3.1
3.2
3.3
3.4

Absolute and Relative Probability . .
Conditional Probabilities
The Mathematics of Events Sequences

Conclusion.

4 Distributed Computing

4.1
4.2
4.3
4.4

Fully Distributed Systems
Event Driven Systems
Object Oriented Programming
Existing Distributed Systems

xi

vii

ix

© N o O

10
11
12
13

15
15
16
17
18

CONTENTS

4.5 Conclusion e e e

5 Conclusion

IT A Java Architecture for the Smart Building
6 Introduction

7 Motivation for a Distributed Object System
7.1 Advantages of Distributed Systems
7.2 Object-Oriented Distribution
7.2.1 Migration of Objects
7.2.2 Duplication of Objects
7.3 A Distributed File System o oL
7.4 Distribution with Java o oo oo

7.5 Conclusion

8 Truly Distributed Objects
8.1 Making Distribution Explicit,
8.2 Comparing Mobile Objects and Distributed Objects
8.3 Truly Distributed Objects o
8.4 Naming of Truly Distributed Objects

85 Conclusion e e e e

9 Architectural Specification
9.1 Specification L e e
9.2 Implications of the Specification
9.3 Conclusion: A Metaphor for the Architecture

10 Implementation
10.1 Correspondence between Classes and Specification
10.2 Class OVErview v v v v e e e e e e e e e e e e e e e
10.3 Details of the Implementation

10.4 Conclusion e e

11 Testing and Verification
11.1 Demonstration of Local Object Creation and Listing
11.2 Listing of File Servers Lo
11.3 Remote Object Creation
11.4 Replicating Objects e

xii

25

27

29

31
32
33
34
34
36
40
41

43
43
44
45
46
47

49
49
50
52

53
93
54
56
o7

CONTENTS

11.5 Migrating Objects« . e 66
11.6 Migration with Simultaneous Access 75
11.7 Demonstration of Graphical RemoteObjects 75
11.8 Graphical RemoteObjects Wrapping Other RemoteObjects 78
11.9 Distributed Processing oL 0oL 79
11.10Conclusion L 82

12 Conclusion 83
IIT A Building Simulator 85
13 Introduction 87
14 Simulation of a Building 89
14.1 OVerview v i e e e e e 89
14.2 Structure of the Simulated Building 90
14.3 Justification of Complexity oo 91
14.4 Conclusion L 92
15 Implementing a Simulated Building 93
15.1 Class Overview o i it it e e e e 93
15.2 Operation of the Building 95
15.3 Building Design Considerations 97
15.3.1 Single Threaded Operation 97

15.3.2 Independent Coordinate Systems 98

15.3.3 First Order Event Model 99

15.4 Simulated Objects L 100
15.4.1 Obstructions e 100

15.4.2 People 100

15.4.3 Doors e 101

15.4.4 Virtual Sensorso 101

15.5 Sample Run 102
15.6 Conclusion L 104
16 Conclusion 105
IV The Smart Building 107
17 Introduction 109

xiii

CONTENTS

18 Definition of a Smart Building

19 Implementation
19.1 Overview o o e e e
19.2 Applications of Distributed Objects
19.3 Flow of Information
19.3.1 Movement Objects oo
19.3.2 Paths and Scenarios
19.3.3 Controller Objects
19.3.4 Summary e e e e
19.4 Segmenting Movements into Paths
19.4.1 The Problem of Singletons
19.4.2 Ewvaluating a Scenario,
19.4.3 A Simple Example of Probability Calculation
19.5 Implementation Details
19.5.1 Values of SimplePaths
19.5.2 Implementing a PathMatcher
19.6 A Sample Run

19.7 Conclusion 0 e e e e e e

20 Possible Enhancements and Further Applications
20.1 The Distributed Object System
20.2 The Building Simulationo 0oL
20.3 The Smart Building

21 Conclusions
Bibliography
A Programmer’s Reference for the Distributed Object System

B Screen Captures from a Smart Building

Xiv

111

113
113
114
116
116
117
118
119
120
120
121
122
125
125
126
127
129

131
131
132
132

133

134

139

143

List of Figures

2.1

9.1

10.1

15.1
15.2

19.1
19.2

B.1
B.2
B.3
B.4
B.5

A simple classification problem 9
Conceptual class diagram00 51
Class diagram of package db.smartroom.server 55
The movements of one person in a simulated room 103
A simulated building 104
Conceptual class diagram for the Smart Building 119
The Smart Building simulation and reconstructions 130
The Smart Building at time t=0 144
The Smart Building at time t=15 145
The Smart Building at time t=35 146
The Smart Building at time t=55 147
The Smart Building at time t=80 148

XV

Part 1

Introduction
and

Literature Review

Chapter 1

Introduction

The objective of this thesis is to present a distributed object architecture that allows
pattern analysis to be shared amongst many computers — as demonstrated by a ‘Smart
Building’

Real time pattern analysis requires high speed computers, with high bandwidth connec-
tions to the data sources. Analysing this data centrally requires an immensely powerful
computer, and a very high speed network; this is the traditional solution. However,
distributing the processing of information to each data source would enable a simple
network of smaller computers to perform the same task at a lower cost — and with a

reduced processing delay.[1]

Object-oriented design allows the information processing to be delegated to the objects
themselves. Furthermore, a group of distributed objects on different computers can act
together, as if they were a single object, using a technique developed in chapter 8. This

allows a single task to be shared by many computers.

An architectural specification defines the environment which distributed objects inhabit.
It clearly defines the respective responsibilities of the distributed object architecture, and
the objects within it. Because the design is object-oriented, the architecture primarily
facilitates interactions between objects. Since each distributed object is able to define
its own migration strategy, novel distribution techniques are made possible, without

needing to modify the architecture.

A ‘Smart Building’ is a concrete example of the usefulness of distributed pattern recog-

I Distributed systems reduce delays by eliminating the communication lag of centralized systems, for
local computations.

CHAPTER 1. INTRODUCTION

nition. A Smart Building is a computerised building that is aware of what is happening
inside it. It can use cameras to follow the movements of the people in the building, and
other devices to assist them wherever possible. Since most activity within a particular
room of the building does not affect the other rooms, each room can have its own com-
puter performing most of its data analysis. The rooms then need to communicate with
each other only when a person moves between rooms. This can all be implemented using
a distributed object architecture — thus proving the usefulness of the architecture for

distributing pattern analysis.

Part T of this dissertation surveys concepts in pattern recognition and distributed com-
puting, which form an essential background for developing a distributed object architec-
ture. It begins with a literature survey of pattern recognition techniques, with special
emphasis on symbolic techniques which can be used for high level abstractions, in chap-
ter 2. Chapter 3 is an introduction to probabilistic techniques, which enable a computer
system to reason with inexact information. Finally, chapter 4 explores the objectives

and requirements of distributed computing.

Part II outlines the development of a distributed object architecture. This environment
enables distributed objects to cooperate, in recognising patterns of information. In

addition, a suite of experiments are used to test the architecture which was developed.

Part III presents a simulated building which aims to provide a rich and powerful source
of data for the Smart Building.

Part IV demonstrates the strength of the architecture developed in part II in a real
application. Using the techniques of part I, and the building simulator of part III,
it gives a concrete example of distributed pattern analysis, in a computerised Smart
Building.

Chapter 2
Pattern Recognition

In this chapter, techniques of data analysis and pattern recognition are explored, in

order to evaluate their suitability for distributed pattern recognition.

Computers can react sensibly to the information which they receive only by correlating
it with information which they already have. This requires a system of knowledge
representation, and a way to compare old and new information. To do this, many

techniques have been developed, each with its own particular area of application.

Context free grammars offer a syntactic approach to pattern recognition, by describing
complex patterns through a set of reduction rules. The computer language Prolog is
designed around these rules, and it is a standard language of Artificial Intelligence (AI)

research.

At alower level, statistical techniques are often used for pattern recognition; they directly

reflect the probabilistic correlation between the data input and the resulting recognition.

Apart from the techniques which explicitly use statistical data, there are other tech-
niques which draw implicit associations: neural networks ‘learn’ to associate example
outputs with example inputs, by building an internal model which attempts to represent
the correct data dependencies. Fuzzy logic and stochastic search algorithms provide al-
ternative internal data representations, which can be optimized to reflect a set of training
data.

CHAPTER 2. PATTERN RECOGNITION

2.1 Context Free Grammars

Context free grammars (CFG’s) can be used to recognize certain types of pattern. A
simple system of rules is used to describe which patterns a grammar will recognize. For

example, the following grammar [2, p. 32| describes simple arithmetic expressions:

erpr — erpr+term | expr—term | term
term — termx* factor | term/ factor | factor

factor — digit | (expr)

The first symbol in the grammar is known as the start symbol, and legal sentences in
the language can be derived only by iteratively expanding non-terminals (expr, term,
factor) according to the production rules. For example, the following set of productions

proves that 9 — 2 x 3 is a valid sentence in this grammar:

expr — expr —term
— expr —termx* factor

— expr — factor x factor

-9 —2%3

One of the greatest achievements of context free grammars and machine understanding
is the compiler, which understands the structure of a computer language sufficiently to

translate it from a human-readable form into machine code for running on a computer.

CFG’s are extremely useful for recognizing well-formed patterns, with a high degree of
structure. However, they cannot easily detect approximate patterns, or patterns close
to the sentences in the grammar. Even compilers are very ineffective at detecting errors,
and worse at correcting them automatically. They are therefore useful for abstract
problems, where information is represented symbolically, but are seldom used directly

on lower level sensor data.

CHAPTER 2. PATTERN RECOGNITION

2.2 Prolog

Prolog! is a computer language designed primarily for Artificial Intelligence (AI) re-

search, and automated theorem proving [3],[4].

Prolog programs are based on a similar rule-based structure to CFG’s; for example, the

following program recognizes the same sentences as the grammar given above.

expr(E) :- append(X,[+|Y],E), expr(X), term(Y).

expr(E) :- append(X,[-]Y],E), expr(X), term(Y).

expr(E) :- term(E).

term(E) :- append(X,[*|Y],E), term(X), factor(Y).

term(E) :- append(X,[/|Y],E), term(X), factor(Y).

term(E) :- factor(E).

factor(E):- E = [X], digit(X).

factor (E) :- append([<|X],[>],E), expr(X).

digit(X) :- X=0. digit(X) :- X=1.

digit(X) :- X=2. digit(X):-X=3. digit(X):-X=4. digit(X):-X=5.
digit(X) :- X=6. digit(X):-X=7. digit(X):-X=8. digit(X):-X=9.

When the program is compiled, the following tests demonstrate that it corresponds to

the grammar:

?- expr([9,-,2,%,3]).
yes

?- expr([5,%,<,6,+,7,>]).
yes

?- expr([5,6,+]).

no

In this program, the brackets are represented using < and >, since round brackets have
intrinsic meaning for Prolog. These tests confirm that 9 — 2 x 3 and 5 * (6 + 7) are
both valid sentences in the grammar, while 5 6 + is not. This example also demonstrates
how Prolog operates; a program consists of a collection of assumptions, which Prolog

will assume to be true. The user then makes a statement, and Prolog decides whether

!Prolog stands for ‘Programming in Logic’, and was developed by Alain Colmerauer and Phillippe
Roussel, from the Artificial Intelligence Group at the University of Aix-Marseille, together with Robert
Kowalski from the University of Edinburgh.

CHAPTER 2. PATTERN RECOGNITION

the statement is true or false, based on the assumptions. Thus, once a program has been

written, interaction with Prolog consists of a session of questions and answers.

A statement in Prolog is written as result:-condition — if condition is true, then
result will be true too. Thus the statement in line 9 ‘digit(X) :- X=0.’ declares that,
if X=0, then X is a digit. Similarly, the statement in line 1 states that, if E consists of an

expression followed by a plus followed by a term, then E will be an expression.

Prolog can recognize any context free grammar, but it can also solve a far wider range
of problems — in fact, it is as general as C++ or any other programming language.
The difference between languages is how elegantly different problems can be solved in
them. For example, Prolog is very effective at recognizing patterns in syntactic data,
while Matlab is most effective at problems which require vector arithmetic and matrix

manipulation.

The greatest difficulty of programming in Prolog is firstly to guarantee that the given
problem has a solution, and secondly to ensure that Prolog will find the solution in a
finite amount of time. If the program were incorrectly designed, Prolog could explore

an infinite number of dead-ends before reaching the correct solution.

Although Prolog decides only whether statements are true or false, it is possible to use
‘side-effects’ to generate extra information during the search for solutions. For example,

the following statement will discover all expressions consisting of exactly five symbols.

?7- length(E,5), expr(E), write(E), fail.

[0, +, 0, *x, O0]J[0, +, O, *, 1]1[0, +, O, *, 2] .
<, 1, >, /, 91k, 2, >, /, 01[k, 2, >, /, 1]
[<, <, 8, >, >][, <, 9, >, >]

no

This shows some of the power of Prolog not evident in the earlier examples: Prolog’s
‘resolution’ strategy for analyzing statements allows it to work backwards as well as
forwards towards a goal — it can generate solutions, as well as testing them. In the
same way, it can find patterns in many forms of data — or generate patterns which
match the data.

This power is one of the reasons why Prolog-related languages are still used for Al
research. However, Prolog is seldom used commercially because of the difficulties of
guaranteeing output, and the rigidity of its formalism which makes Prolog programs

hard to write or understand.

CHAPTER 2. PATTERN RECOGNITION

2.3 Statistical Pattern Recognition

Statistical pattern recognition is the classical method of pattern recognition. An item
of data is converted into a ‘feature vector’?, which is then classified as belonging to a
particular class. For example, a patient could be analyzed using two tests, to decide
whether he/she is suffering from a particular disease. The results of a number of these
tests could be plotted in two dimensions on one graph, with a symbol to indicate whether
or not each patient actually had the disease. Then the test space could be partitioned

according to the correspondence between test results and the presence of disease.

Figure 2.1 shows how a sample data set could be plotted in this situation. Here the class
of each data point is shown using either a filled circle or an empty diamond. For this
data, the dashed line clearly separates the two classes, and therefore it could be used
to classify the data points. However, for real data, the best division between classes is

seldom so simple.

Ay o o

Figure 2.1: A simple classification problem

For some problems, such as image processing or face recognition [5], the feature vector
has a very high dimensionality — every pixel in the image is an entry in the feature
vector. In that case, the features are often projected into a lower dimensional space

first [6], and classification is then performed on these new features.

Traditional pattern recognition methods all attempt to partition the feature space to
produce the best possible classifications. Solutions include using hyper-planes to divide
the space, classifying the regions near each point according to that point’s classification
(‘nearest-neighbour classification’), and selecting a weighted subset of the features ac-
cording to their statistical significance in classification. Weiss and Kulikowski [7] have
written a review of the most commonly used statistical techniques of pattern recogni-

tion and machine learning, and of neural networks. The seminal justification of these

2 A feature vector is an ordered list (v1,v2,...,vn), with each element v; chosen from a predetermined
set A;

CHAPTER 2. PATTERN RECOGNITION

methods is by Duda and Hart [8].

2.4 Neural Networks

Neural networks offer a method of training a classifier directly, without explicitly de-
ciding which of the features are most important. A neural network uses a mechanism
analogous to that of a biological neuron in order to associate a given stimulus with a
given response [9]. The most commonly used neural network is the multilayer perceptron,

which is a feedforward network.

If the neural network is trained with enough data, it learns to produce correct or nearly
correct responses. To do this, it adjusts the weights of its internal structure. Then,
when the network is presented with data outside of the training set, the internal model

calculates a response.

In an ideal case, the internal model correctly represents the essence of the desired corre-
lation, and both training data and new data are correctly matched to responses. Because
of the many weights in a typical neural network, and local linearities, enough training
usually provides a good approximation to the correct model. Since neural networks can
be automatically trained, and are reasonably efficient once trained, they are often used
when a large amount of training data is available and when the underlying physical

model is uncertain®.

One disadvantage of neural networks is that they have an intractable internal model:
the internal weights cannot be explained, nor can they be shown to correspond to any
physical process. As a result, it is impossible to translate the internal model of a neural
network into a comprehensible description, and there is no guarantee that a neural
network will work consistently on all new data. For this reason, neural networks are

sometimes used together with a traditional secondary control system, for safety.

In summary, neural networks provide a very general model which can be used in
many classification problems. However they usually need time-consuming training on
pre-classified data, and their internal models cannot be scrutinized; this limits their

widespread adoption.

Support vector machines are a relatively new class of feedforward network. They require
considerably less training time than traditional multilayer perceptrons [11, p.345], and

produce very general results, but their speed of operation can be slower than that of

3For example, neural networks are often used in face recognition applications [10]

10

CHAPTER 2. PATTERN RECOGNITION

ordinary neural networks.

2.5 Stochastic Search

A significant disadvantage of traditional methods of pattern recognition is that a large

set of pre-classified training data is needed to produce the classification model.

Conversely, context free grammars and many other formal techniques can analyze only
those problems which are phrased as a collection of rules. This makes it difficult for
linguistic constraints to be combined with training data into a single model; although
traditional models can be converted into a system of rules, the system is usually large

and unwieldy, and too complex to be interpreted directly by a person.

Stochastic search techniques offer a method of combining training data and pre-specified
rules. Furthermore, stochastic techniques can produce data models which correspond to
human representational systems. The disadvantage is that a stochastic solution cannot

be guaranteed to be optimal, unlike a purely mathematical result.

Stochastic searches modify the parameter values of an arbitrary data model in order
to find the model which best fits the training data. Because any data model can be
used, the model can be designed to be intelligible to humans. For example, an air
conditioner could be trained to produce a comfortable environment, from examples of
temperatures and humidities and the corresponding actions. If the air conditioner had
a heater and a humidifier, and also temperature and humidity sensors, then the data
model could consist of rules of the following form: If (comparison of temperature
or humidity), then (perform action). The system would then deduce rules such

as:

If temperature < 16°C, then turn on the heater.

If humidity < 30%, then turn on the humidifier.

However, if the data model had rules of form If (A*temperature + Bxhumidity < 1),

then (perform action) then more complex rules could be produced, such as:

If 0.06*temperature + 0.005*humidity < 1, then turn on the

heater.

11

CHAPTER 2. PATTERN RECOGNITION

Now, if the day were very humid, the heater would turn on only at a higher temperature

than normal, to keep the building occupants as comfortable as possible.

Because a stochastic search can be made for the parameters of any data model, addi-
tional predefined restrictions can be built into a model to integrate human experience
with training data. Commonly used stochastic search techniques include genetic algo-
rithms (GA’s), population based incremental learning (PBIL), and ant colony optimiza-
tions [12].

Stochastic techniques can provide good results, especially when an appropriate data
model is used. Although classical statistical techniques can produce solutions more
quickly for standard models, stochastic techniques offer far greater convenience and

flexibility of representation than any other model.

2.6 Fuzzy Logic and Expert Systems

Fuzzy logic extends classification from a binary problem to a real-valued problem. In-
stead of classifying a datum as belonging to one particular state or another, fuzzy logic
assigns it a degree of membership of each state [13]. (The sum of all of these degrees is
1, to indicate that these are the only possible states.) This differs subtly from proba-
bilistic interpretations, in the following way: Imagine that a person is classified as short
or tall, according to their height. If I declare that p(Fred is tall) = 80% and p(Fred is
short) = 20%, then Fred is either tall or short, but I would bet 4 to 1 that he is tall. If,
however, I state that Fred has 80% membership of the tall state (and 20% membership
of the short state), then it is not possible to assign him definitively to one state or the

other; he is a partial member of both.

Fuzzy logic essentially blurs the distinction between states, allowing powerful classifi-
cation systems to be created, with fewer states than in traditional methods. Further-
more, fuzzy controllers interpolate between their control actions more smoothly than
traditional state-based controllers [14]. Fuzzy logic implementations are also easier for
humans to interpret than state-based classifiers, so their solutions can be examined and

verified.

Expert systems are computer systems which attempt to mimic the assessments of a
human expert. They have been demonstrated extensively in medical scenarios, in which
a list of symptoms and test results is provided, and a diagnosis is called for. The facts

are often combined into probabilistic chains of cause and effect [15], which are used to

12

CHAPTER 2. PATTERN RECOGNITION

produce a judgement of the most likely diagnosis. The chain of reasoning is usually
provided by a human expert (assisted by a ‘knowledge engineer’), who can also help to
assign the probabilities. Once this has been done, training data can be used to improve

the probability values.

Fuzzy logic and expert systems both provide more easily understood schemes of knowl-
edge representation than traditional classifiers, through high-level semantic represen-
tations of their information. They are also amenable to stochastic search and other
machine learning techniques, but the simplicity of their models must be maintained for
this to be useful [16, p. 13,27].

2.7 Conclusion

The number of pattern recognition techniques commonly used proves that a different
technique is most useful for each type of problem. The crux of choosing a technique
is deciding how the data and the classifier should be represented, based on a trade-off
between mathematical and linguistic models of the data. In this dissertation, concepts
from Prolog will be used extensively in the semantic analysis of combinations of paths
in the Smart Building of part IV.

13

Chapter 3

Probability

Pattern recognition is a complex task that requires computer decision-making. Humans
are often required to make decisions based on inaccurate or incomplete information.
Similarly, computers must often process information from unreliable sensors in order
to make a decision, by sensibly combining probabilistic events. This chapter examines
the mathematics of probability and uncertain reasoning, in order to provide a basis for

computer analysis of complex data.

3.1 Absolute and Relative Probability

When a computer must rely on uncertain data, a probability is often assigned to the data
as a measure of its accuracy. There are two different ways to measure this probability:
absolutely and relatively. An absolute measure of probability describes the likelihood
of a statement as a percentage, e.g. a statement of 80% probability would be true 4
times out of 5, on average. In a relative measure, only comparative probabilities are
needed. For example, when a program must recognize faces from a training set, relative

probabilities enable the best match to be chosen.

In order for absolute probabilities to be used, laborious physical tests must be performed
to calibrate the probabilities in the system. Furthermore, environmental changes may
alter these values, invalidating the measurements. Even so, a poor probability estimate
can be better than none at all, and it is sometimes also possible to obtain a probability

estimate by using two independent sensors to test each other.
Relative probability suffers from the opposite problem; since relative probabilities have

15

CHAPTER 3. PROBABILITY

no direct physical basis, it is possible that an exceedingly unlikely solution to a problem
will be selected as the ‘best solution’. In absolute terms, this solution might be only 1%
certain, yet it would be selected as best simply because it had a higher probability than

the next best solution.

A further refinement of absolute probability is to specify the probability of an event using
two numbers instead of one. The second value could be used to denote the confidence in
the first value. For example, a probability pair (80%,0%) would denote that there was
an exact 80% chance of a particular event happening, with 0% variability. Similarly, the
pair (80%,10%) could indicate a 95% confidence that the true probability lay between
70% and 90%. When performing calculations with many probabilities of this type, it
would then be possible to provide upper and lower bounds for the true probability of a

combination of events.

3.2 Conditional Probabilities

In many real situations, the sensors which are used to detect events are unreliable;

conditional probabilities can be used to codify the properties of these detectors.

A simple probability represents the likelihood or certainty of a particular event occurring,
in terms of Bayesian probability [17]; the probability that event A occurs is denoted by
p(A), which is a real number between 0 and 1. Conditional probabilities represent
relationships between probabilistic events; the conditional probability p(A|B) is the
likelihood that event A occurred if event B is known to have occurred. By definition,

p(A|B) = 57

As a physical example, imagine that a motion detecting camera is in a room, and it
generates an event ‘B’ whenever it detects movement. Assume furthermore that it
generates ‘~ B’ if it does not detect movement, and it scans once per second. Let ‘A’ be

the event that there is actually someone in the room.

If the camera detects movement one fifth of the time (one second in every five), then we
could write p(B) = 0.2 and similarly p(—B) = 0.8 — the probability of no movement
being detected. If the camera correctly detects movements 9 times out of 10, then
p(B|A) = 0.9. Similarly, if the camera incorrectly registers a spurious movement once
every 100 seconds, then p(B|—-A) = 0.01.

From p(B), p(B|A) and p(B|—-A), we can compute all of the remaining conditional
probabilities, such as p(A|B), which represents the likelihood that there is actually

16

CHAPTER 3. PROBABILITY

someone in the room when movement is detected, as follows:

p(=B|A) = 0.1 - the chance of failing to detect a movement!

p(—B|=A) = 0.99 - the chance of correctly identifying an absence of movement

-AAB B)-p(AAB B)—p(B|A)p(A
Now p(B|-A4) = p(p(ﬂA)) — & 1)75514)) — B)lg(p(h))p()
therefore %%;()A) =0.01 and so p(A4) = 33 ~ 0.21
From this, we can deduce that p(A|B) = égig ~ 0.96 and p(A|-B) = 8;28 ~ 0.03.

These are the two most useful probabilities in determining the reliability of the motion

detector readings.

3.3 The Mathematics of Events Sequences

Conditional probabilities may be combined to determine the probability of a sequence
of events. For example, let us consider two motion detections in succession, and analyze
the probabilities of their corresponding to 0, 1 or 2 real events. Label the detections B

and Bs, and the presences of a person A; and As.

The probability that both detections are correct is

P(A1 A Aa|By A By) = BAEERoe) — PO BT = p(A|B1) p(4el Bo), if the

events are independent.

Thus p(A1 A A2| B A Ba) = 92%,
p(—A1 A As|B1 A By) = p(A1 A —A2|B1 A Ba) = p(Ai1|B1).p(—A2|Bs) = 3.8%,
p(=A; A —=A3| By A By) = 0.2%.

Therefore, the probability that there were two real events in 92%, the probability of one
real event is 7.6% (= 3.8% X 2), and the probability that both detections were spurious
is 0.2%.2 From this, it is clear that the chances of both movement detections being

spurious becomes vanishingly small, even with an unreliable detector.

We can use similar techniques to compute the probability that someone is moving in
the room over n time units, given that they are detected only k times, namely p(All the

A;’s are true, given that k of the B;’s are false).

When a large number of events are combined, a combinational explosion occurs. As

a result, the probability of any particular result becomes infinitesimal - in this case,

!Given that A has occurred, then B must either occur or not occur, so p(B|A) + p(—~B|A) = 1.
*These probabilities should sum to 100%; the error results from rounding to 2 significant figures

17

CHAPTER 3. PROBABILITY

there are so many different situations where one or more of the A;’s is false, that they

overwhelm the case where all of the A;’s are true.

This does not actually reflect the true situation; given a sequence of motion detections
A1, A, —A3, Ay (2 detections, a gap, and another detection), a person would probably
deduce that — A3 was a false negative, and that there had been a person in the room for
the whole period. This means that the events are not independent of each other. Never-
theless, the assumption of independence allows us to place bounds on the probabilities

of event combinations.

3.4 Conclusion

All of the above concepts are useful in analysing the movements of people within a
Smart Building, to produce probable paths of motion within each room. This requires
comprehensive modelling of the uncertainties introduced by the cameras that detect

motion, and by human activities.

18

Chapter 4
Distributed Computing

A group of computers can often perform a task far more quickly than one computer
acting alone [18, p. 316].! This is the promise of distributed computing, in which a
group of independent computers work together on a common task. These computers do

not share memory, but they are able to communicate with each other via a network.

In many cases, the computers of a distributed system cooperate as peers, and no one
computer has precedence over the others. In contrast, multitasking is a technique which
allows a single computer to switch rapidly between tasks, acting as if it were performing
them simultaneously — each task seems to have a computer to itself. The difference
between distributed computing and multitasking is that multitasking involves one com-
puter executing many different tasks at once, while in distributed computing, many
computers share a single task. These techniques can also be combined, to allow many

tasks to be distributed across a network of computers.

Programming a distributed system differs from programming a stand-alone system in

two major ways.

Firstly, a stand-alone system is usually limited in speed primarily by the rate at which
computations can be performed. In a distributed system, a significant limiting factor
is often the rate at which data can be communicated between the separate processors.
Therefore a processor must sometimes wait, idle, for more data to become available.
(As a result, distributed systems share many of the challenges and techniques of ‘event
driven’ systems.) An effective distributed system needs to keep as many processors

working productively as possible at a time. Large data buffers would allow this, but

1For example, one portion of a program may execute well on one type of machine, with a fast
processor, while another may run fastest on another computer with large amounts of memory

19

CHAPTER 4. DISTRIBUTED COMPUTING

they introduce a large lag into the system, which would make it ineffective for real-time

problems. Therefore other, more creative techniques must be used.

Secondly, pathological data dependency patterns must be avoided. The worst of these
is a ‘deadlock’, in which two processes are each stuck, waiting for the other to produce
more data. Automatic deadlock-avoidance algorithms do exist [19, p.227], but they
require explicit management of all resources in the system, which makes them difficult
to use. An alternative to run-time deadlock prevention is to analyse the algorithms used

with data-flow techniques, to ensure that no deadlock can occur.

In a real situation, a distributed algorithm should also be able to recover from physical
hardware failures — if one computer crashes, the entire network of computers should
be able to continue with most operations. The network should also continue to operate
sensibly, even if some communication links break down. For this to happen effectively,

a fully distributed computer system is needed.

4.1 Fully Distributed Systems

A fully distributed computer system is one in which there is no central, controlling com-
puter; instead, all computers are peers and must decide on their behaviour collectively.
This is the ideal case for many distributed systems: there is no central server which
could crash and disable the whole network; network scalability is also not limited by
the bandwidth of one server. However, this complete distribution of control has its own
bandwidth cost, and there are certain classes of problems which cannot be solved in this
way.? Furthermore, in a real situation, it is convenient to be able to log the results of

the system centrally for archiving and accounting purposes.

Starting a fully distributed system initially, or restarting it after a catastrophic fail-
ure also presents difficulties; no central computer should be needed to coordinate the
bootstrapping process. However, it would be useful if the system could nevertheless
re-assimilate the information which it produced during its earlier operation. A solution
is to use one particular computer to backup the important data of the system, and to
act as a source of information after a crash.? This technique of centralising certain tasks
in an otherwise fully distributed system, can also be used for tasks such as deadlock pre-

vention (using the banker’s algorithm [19, p.587]). Although this can limit the degree

2 An example of this is the Byzantine generals problem [19, p. 598]

31f this backup server is not active during the restart, its information will not be available to the
system — but the system should nevertheless be able to act sensibly without it, and assimilate the
information at a later stage

20

CHAPTER 4. DISTRIBUTED COMPUTING

of fault-tolerance of the system, a major malfunction will in any event require the use
of crash recovery techniques and roll-back (process termination), so this is not a great

disadvantage.

4.2 Event Driven Systems

Event driven systems share many features with distributed systems — in fact, many

distributed systems are based on the message passing paradigm of event driven systems.

Traditionally, computer programs are written from a procedural point of view: e.g. read
a file from disk; sort the numbers contained in the file; write the new sorted file back to
disk. In this model, the computer program directs all operations, and dictates the speed
at which everything must happen. This is very efficient (since the processor is busy all
the time) for systems where all the data is already available, and there is no hurry to

produce output.

However, many computer systems work the other way around: it is external occurrences
which drive the system. For example, a washing machine spends most of its time just
waiting for time to pass, so that it can proceed to a new cycle, or for someone to press
a button. Another example could be an air conditioner in an office, which captures
temperature and humidity data one hundred times a second, filters it to reduce noise
errors, and uses it to adjust the output power, as well as periodically reporting to a

central building management computer.

If all of these occurrences are translated into events, then events direct the operation
of the system, producing an ‘event driven system’ [20]. In an event driven operating
system, events can be used for all communication between processes, as well as for

communication between processes and hardware.

Thus, distributed and event driven systems operate according to a message paradigm:
each item of information in the system is represented as a message, which is automat-
ically routed from source to destination by the operating system. In contrast, classical
operating systems, such as UNIX, are founded on a file-based paradigm: every aspect
of the operating system is a file — including even the main memory and the CPU itself

— and the operating system primarily provides file access mechanisms.

Just as the UNIX kernel is extended with file processing utilities, so distributed systems
are extended with message handling utilities. For example, sort is a UNIX utility

which reads the contents of a given file, and produces a new, sorted version. Similarly,

21

CHAPTER 4. DISTRIBUTED COMPUTING

an Optical Character Recognition (OCR) process on a distributed system could consume
scanned images (packaged into messages), and produce messages in which the characters

have been recognised.

Distributed systems enable a group of computers to coordinate their activities, and
thus solve far more complicated problems than a single computer could, if it acted
alone. This is particularly useful for real-time applications, where speed is critical [21].
In fact, a centralised approach is often impossible for a real-time system because of
the communication delays between the central computer and the remote sensors, and
because of the enormous number of sensors in a large network; a distributed system is

essential.

4.3 Object Oriented Programming

Object Oriented Programming (OOP) is a computer program design philosophy which
sees complex computer systems as composed of many smaller components, called objects.
An object essentially binds together related data and the actions which can be performed
on that data. The actions are known as the object’s interface, and objects interact by

using each other’s interfaces [22].

To illustrate this, consider the example of a first-in first-out queue. The concept is
similar to a supermarket queue — there are two basic operations: adding data to the
tail of the queue is like someone joining the shopping queue, and removing data from the
head of the queue is like someone reaching the cashier. There are many different ways
to program a classic data structure like this, but the functionality remains the same.
All that one can do with a queue is add data to the tail and remove data from the head

(and somehow check that there is actually data to remove).

Of course, one can have more than one queue, and although the queues will all have the
same functionality, each will be storing different data. In computer science, these queue
objects are called instances of the queue class, and their add and remove operations form

the class interface.

In addition, one can have a slightly different class of queue, which exhibits the same
basic behaviour as the original, but gives additional features as well. This is called a
derived class, a child of the original class, and is roughly analogous to an express queue
in a supermarket. Another example is the class of cars, derived from the class of vehicles

— one would expect a car to exhibit all the same modes of behaviour as a more general

22

CHAPTER 4. DISTRIBUTED COMPUTING

vehicle, and also to add extra functionality.

OOQP is a philosophy of hiding the inner workings of objects from each other. If the
implementation of an object is hidden, then other programs can no longer be dependant
on its inner workings. This means that the inner workings can be modified without
having to change the code of any other objects. In the supermarket, this is analogous

to upgrading the cash registers, without having to inform every customer.

This data hiding is particularly useful in distributed systems, where OOP can shield
ordinary objects from the inner workings of the system, but still give them access to the

features which they need to communicate or migrate between computers.

4.4 Existing Distributed Systems

Distributed computing environments already exist for certain classes of problems; the
most well known of these are CORBA, PVM and DCOM |[23].

CORBA is the Common Object Request Broker Architecture, maintained by the Object
Management Group (OMG). This is a standard interface architecture, which facilitates
communication between objects in heterogeneous computer environments. CORBA is
exceedingly useful for providing common interfaces for databases and other information
services, but it is currently very restrictive when transmitting richly structured data

between computers — only simple data can be sent with ease.

PVM (Parallel Virtual Machine) provides programmers with the illusion that a group
of computers is actually a single machine. While CORBA emphasises the separateness
of the computers and the unreliability of the network between them, PVM hides the
network’s very existence. This is most useful for problems requiring huge computational
resources, such as ray-tracing algorithms, but not so useful for collating information,

since this is a meaningless concept on the single virtual computer.

DCOM is Microsoft’s Distributed Component Object Model. It allows objects on dif-
ferent computers to communicate with each other, and pass parameters to each other’s
methods, as if they were on the same computer. DCOM is primarily a communication
mechanism, Microsoft’s ‘TCP/IP of objects’ [24]; it is useful for linking applications
which are already running on two computers, but it does not itself provide for remote

creation of new objects on a computer.

The World Wide Web (WWW) is also a distributed computing environment, in a sense.

23

CHAPTER 4. DISTRIBUTED COMPUTING

However, the greatest part of its communication is unidirectional, from web servers to
computer users. In other words, it is ideal for client-server applications, but it does not

allow for direct peer to peer communication.

4.5 Conclusion

Distributed computing systems allow independent computers to work together. However,
for security and for commercial reasons, most architectures limit interactions to simple,
passive data transmission. The next part describes the advantages of allowing more

sophisticated interactions, where active processes can also move between computers.

24

Chapter 5

Conclusion

This part has shown current challenges in data processing. Firstly, methods of pattern
recognition must be adapted for distributed environments where not all data is available.
Secondly, great flexibility in probabilistic decision making is demanded by real-time
processing, in order to generate and analyse many possible scenarios simultaneously.
Finally, a distributed system must provide the correct level of abstraction for the objects

that use it, to facilitate distributed pattern recognition.

The above survey of current methods of pattern analysis, probabilistic techniques, and
distributed computing systems, suggests that there is a need for a new distributed ar-

chitecture that allows efficient high-speed pattern analysis.

25

Part 11

A Java Architecture for the Smart
Building

27

Chapter 6

Introduction

Distributed objects require a computer environment which enables them to migrate
between different computers. Part IT of this thesis shows the development of a computer

architecture, for distributed pattern analysis applications — such as a ‘Smart Building’.

This part describes a new architecture which can be used to distribute the analysis
of patterns to the source of the data. In this way, a network of smaller computers
could be used to perform the task of a central computer at a far lower cost — since
those computers would already be needed to acquire the data. The advantages of this
system would include lower cost, greatly enhanced fault tolerance, and a reduction in
lag between the production and processing of data, especially in very large networks —

facilitating real-time control of the system.

This distributed architecture is Java based; the object-oriented data hierarchy allows
data to migrate transparently and actively between computer systems of different types
and processing abilities. This organisation allows both data and the agents which process
the data to move, enabling both data and processing to be distributed across the system.
In this way, those computers with related information could pool their resources to
provide better results — while avoiding the information overload which would result if

all systems shared all of their information.

Chapter 7 motivates why this architecture should be object-oriented, and why it should
be written in the Java language. Next, chapter 8 explains a new technique which allows
a group of objects to act together as a single object. Chapter 9 gives a precise specifi-
cation of the requirements of the architecture, while chapter 10 describes in detail the
implementation of a suitable environment. Finally, chapter 11 lists experiments which

demonstrate the strength of the system developed.

29

Chapter 7

Motivation for a Distributed Object
System

The problem with existing methods of real time pattern analysis is that they require high
speed computers, with high bandwidth connections to their data sources. Traditional
solutions which centralize the data before analysing it therefore require an immensely
powerful, central computer, with very high bandwidth links to all of its sources of data,
possibly extending over long distances. Distributed systems, on the other hand, can use
low bandwidth network links to span long distances, with a computer connected to each

data source.

In control and automation applications, a large network of sensors is often created.
These sensors are then monitored in order to decide on the actions which the system
must perform. Although there are many ways in which to make these decisions (such as
centralizing all of the results, or performing the decision making locally at the computer

nearest to each sensor), some strategies may be more efficient than others.

The ideal communication strategy depends on the lag and bandwidth of the network
connecting the computers and the speeds of the computers, and also on the number of

sensors and how quickly action must be taken.

This chapter first details why a distributed system is needed in order to coordinate
this information efficiently and flexibly, and why objects are the best way to represent
both the information and the agents which process it. Next is an explanation of the
mechanisms which are needed for a distributed file system, which is an important first

step towards a distributed object system. Finally, Java is shown to be an ideal language

31

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

for implementing these distributed systems.

7.1 Advantages of Distributed Systems

The simplest way to analyse distributed information is to send all of the information
to a central server. This server can then hold all of the information, and make well-
informed decisions. This centralised solution does have the advantage that all incoming

information can be used for each decision.

A disadvantage of this solution is that it may be very inefficient, as discussed in chapter 4,
the limiting factors being the processor speed of the computer and the bandwidth of its

connection to the network.

An alternative solution is to have a computer connected to each sensor, to perform as
much analysis as possible at each data source. Still, the decisions at one sensor will be
dependent on results from other sensors. Thus a mechanism is needed for sensors to share
relevant information, but which will limit the spread of unnecessary information, such as
purely local information which has little or no effect on other computers’ decisions. This
is a distributed system, as there is no central point of control, and all of the computers

are essentially peers.

Such a distributed system has the great advantage of fault tolerance, over a conventional
system: there is no central server which could crash and disable the whole network, and
if one computer crashes, the remaining computers should be able to continue with most
operations. The system should also be able to operate sensibly, even if some commu-
nication links break down, and the network is temporarily divided into two disjoint

subnetworks.

A distributed solution should also be considerably cheaper to implement than a cen-
tralised one: sensors are often connected to a network through small computers that
preprocess their data. The underused processing power of these machines could be used
to operate a distributed control system; now ultra-high speed network links and an

enormously powerful central computer are no longer needed.

Distributed computing enables a network of lesser computers to cooperate to exceed
the power of one huge central computer, by each working on a different part of a prob-
lem. The challenge is deciding how to subdivide a problem, and what information each

computer should communicate to other computers.!

Because of network communication overheads, suitable subdivisions should minimize intersite com-

32

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

7.2 Object-Oriented Distribution

For computers in a distributed network to be able to share their information, a standard
system of representation is required. In simple systems, the possible data types and their
characteristics are all known in advance, when the system is designed. However, more
complex systems must be able to handle many heterogeneous classes of data, and they

must also enable new data types to be added without redesigning the entire system [24].

For example, consider a robot designed as a distributed network of microcomputers —
one for each joint, and one to process visual input from a pair of cameras. If the robot
were to try to pick up a ball, the joint computers could receive information from the eyes
detailing where the ball is relative to the robot’s left arm. The left arm computer would
then decide how the arm should move, and give instructions to perform the motion.
Furthermore, it might communicate an outline of the movement to the right arm, to

prevent the two arms from accidentally colliding with each other.

Traditional solutions for representing the data, as discussed in part I, can be overspecific,
or excessively general, e.g. CORBA. If all data must be represented within a common
framework, then the possibilities are limited for extending the system with radically new
data types (since the entire system must be reprogrammed to accept new types). On
the other hand, if a completely general and abstract representation system is used, then
a huge overhead is incurred in communicating and interpreting both the data and its

meaning together.

A solution to this problem is to represent each item of data as an object?. This has a
number of advantages. One of the greatest of these is that code is directly associated
with each data type. Therefore, if new data types are added to the system, the bulk of

the existing program code is unchanged.

For example, in the robot analogy, if pressure sensors were added to the robot arm, then
extra objects could be created to represent this information. If the old control program
were used, then this new data would simply be ignored. However a new arm motor
control program could take pressure data into account and stop moving the arm earlier
than expected, if necessary. In other respects (such as communicating with the other
arm), the new program could operate as before; in object-oriented terms, it could inherit

its behaviour from its parent, the old program.

munication [25, p. 105]. In contrast, when multitasking on a single computer, communications overheads
are seldom a significant cost.

2An object essentially binds together related data and the actions which can be performed on that
data.

33

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

An object-oriented design also allows conceptually similar data items to share a common
interface, so that on some level they could all be interrogated in the same manner. For
example, both pressure and temperature sensors on a robot arm could provide objects

with a warning method, in case the arm was being overtaxed.

7.2.1 Migration of Objects

Another major advantage of using objects for data is that the agents which process the
data can themselves be objects. This is very important, because both information and
agents can then migrate through the network. Thus the distribution of data and of

processing can both be achieved in the same way.

For example, an object could represent the robot’s intention to hold a ball in its hand [26].
This object could start in the vision processor, while searching and reaching for the ball,
then migrate to the hand once the ball was grasped. If the ball were transferred to the

other hand, the object could again move to follow it.

This example demonstrates an important design philosophy for distributed control sys-
tems: the internal state of the control system should mirror the actual state of the
physical system, especially in spatial terms. Thus the ‘ball’ object would serve as an
electronic avatar for the real ball; by allowing the object to follow the actual ball, the

system would operate efficiently, and long communication paths could be avoided.

The question that arises is that of responsibility for the migration of objects. There
are two answers to this question, corresponding to push and pull technologies on the
Internet. In the case of an agent, it is clear that the object can anticipate where it
should go, and it should be able to move itself automatically (through a bootstrapping
hook into the new host computer). Passive data, on the other hand, would have to be
pulled to another computer, if it was thought to be useful. Even so, an observer object

would be needed to locate this data, and to inform the objects interested in it.

7.2.2 Duplication of Objects

It may be inefficient to have only one copy of a particular object in the system, partic-
ularly if objects on two different computers both need access to it. This problem may
be resolved by duplicating the object, but care must be taken to ensure that the objects
are not modified separately, which could result in inconsistent information propagating

through the system. There are many different ways in which an object can be dupli-

34

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

cated; the most efficient way will depend on how the object is used. For example, certain
types of information are ‘read-only’ and will never change, therefore it is safe to copy
them freely without any restrictions except the assurance that at least one copy always

remains. Section 7.3 gives more detail about various modes of data access.

For agents, even more advanced duplication modes are possible. In the simplest case, a
single agent can move to follow useful data wherever possible. However, sometimes two
sets of data may both seem useful simultaneously. In this case, the agent can either try
to follow both sets at once, or it can split into two separate agents — one for each set
of data. At a later stage, the agents may be able to recombine their separate findings,
using hindsight to decipher the most probable set of external events. For example, if the
robot’s visual system were following the movement of a ball, the object following the
movement of the ball might confuse the ball and its shadow and therefore split. Only at
a later stage would it become clear, which of the two shapes was actually the ball, and

then the objects could merge again.

Because there are so many different ways in which objects can migrate or duplicate
themselves, it would be unrealistic to prescribe an exclusive list of modes to which
objects must conform. Instead, objects should provide special methods to perform these
actions themselves; the default behaviour would be for only the simplest of objects3.
By allowing objects to copy themselves, the mechanisms for distribution remain simple
and accessible, yet the system will be flexible enough to allow for advanced distribution

strategies®.

A distributed object system provides a powerful and general framework for programming
distributed applications, yet it simplifies their design by enforcing the independence of
different types of data. The distributed object system must provide only a few basic
services, such as transmitting a given object to a remote computer and activating it, and
locating objects already on a remote computer. This already provides enough power
for simple distributed applications; more advanced programs could extend the basic

mechanisms for extra flexibility.

3Standard classes could be designed for distributing data according to typical modes (e.g. read-only
data); specific classes could then be derived from these, which would exhibit the same functionality.

“Existing object-oriented systems (such as CORBA) provide a much more restrictive architecture, in
which objects cannot move, but must always be queried remotely. There are also standard distributed
computing algorithms, such as PVM, which transparently treat a network of computers as a single
computer — but these ignore the physical localisation of data in real control problems.

35

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

7.3 A Distributed File System

A distributed filing system illustrates many of the features of a distributed object system
— a distributed filing system is essentially a distributed object system in which each
object is a file. This section describes the design of a distributed filing system, as a first

step towards creating a distributed object system.

Any filing system must provide a few basic operations [19]; a minimal set could be:
obtain a list of files, read a named file, and write a named file. Underlying these three
operations are two data structures: a data structure for naming files, and a structure for
holding file contents. This is the only contact that processes need with the filing system;

any other activities of the filing system should be transparent to the users.

Traditionally, files are stored on a disc which is physically attached to the computer
which is accessing them. In this architecture, however, files are stored in the memories

of the computers participating in a network, to produce the distributed filing system.

Solution 1: A centralized file server

The simplest system to implement would scarcely be distributed at all. Rather, one

computer would hold all files, and provide them to other computers on request.

Each computer would need to know the address of the file server in advance in order
to access files, or the address could be broadcast periodically if the network supports
broadcasting. For a file to be transferred, there would have to be both a file server
program and a file receiving program. In loading a file, the client program would request
a file (by name), and then wait for a reply message containing the file. Saving would be

the reverse process.

This system would be very inefficient, especially if a file were often changed by the same
process, or if the file server were a long distance away, or if only a small portion of the
file needed to be changed. This situation could be improved upon if local copies of the
most recently read files were retained. (However, before serving the local copy, the client
program would first have to send a short message to the file server, to confirm that the
original file had not changed since the copy was made.?) A more fundamental problem
is that the entire file system would cease to function if the file server or its network

connection failed.

SIf certain classes of files were known to be definitively archived, and would never change, this
confirmation step could sometimes be avoided.

36

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM
Solution 2: Passive distributed file servers

An obvious extension to a single file server system is a system in which every computer
can function as a file server. This means that files can potentially reside nearer to the
computers which access them, reducing network congestion, and no single computer

would need to handle the burden of storing and transmitting all of the files.

The decision of where to store a particular file now becomes significant; the speed ad-
vantage to be gained from an efficient strategy is considerable. A simple solution would
be to store the file on the computer which created it. This assumes that all computers
have an equal need to create files, and an equal ability to store and transmit them.
It also assumes that the creating computer will have the greatest need to use its own
files. This is the simplest extension to the centralized file server model, and it has the
great advantage that file naming is simple; if every file name includes the name of the

computer on which it was created, then finding a file by name becomes a trivial task.

The major limitation of this scheme is that files are placed on computers at creation time,
and then remain static within the network. Therefore, this system suffers from many of
the disadvantages of the centralized approach when files are repeatedly accessed from a
great distance. Furthermore, the network load might be very unequally distributed, par-
ticularly if certain computers primarily produced files, while others primarily consumed
them.

For example, a few outlying computers might collect physical data for all the other
computers to process. The links to these few computers might then be overwhelmed
with all of the requests for the files. Again, caching recently used files could improve the
performance. However, it would be better still if the files could migrate dynamically to

where they were most needed.

Solution 3: Active distributed file servers

When a file is accessed, the computer which receives it can make a copy for later use.
Provided that the original file is not changed, the copy can always be used, saving
network bandwidth. The essential trade off in a distributed filing system is between the
bandwidth savings possible in keeping many copies of the same file, and the bandwidth
costs resulting from the extra overheads of keeping the files synchronized. (Certain types

of files are known never to change, making them particularly useful to cache.)

One method of reducing overheads is to permanently move a file from one computer to

37

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

another — the new computer can then serve the file immediately, without needing to
request permission first. If one computer accounts for most of the access to a particular

file, then transferring ownership could be profitable.

Another method of reducing network congestion, while still limiting the number of copies
of a given file, would be to attempt to use the caches of nearby computers to access the
file, before requesting it from the original server. This would be particularly useful if the
computers were connected with a tree-like network, in which communications to local
computers consume bandwidth only on local links, while communications with distant

computers consume bandwidth on local and long-distance links.

Many files are read from far more often than they are written to. This fact can be used
in the design of a distributed file system: previously, it was suggested that the owner of
a file should be consulted before a cached copy is offered for reading or writing. This
requires one message to the owner for each file read, and one message for each file write
operation. An alternative solution is to place the onus on the owner, to warn the holders
of duplicates whenever a file is about to be modified. In this case, no message is required
when a file is read. However, when a file is about to be written, messages must be sent
to purge each cached copy, and when a file is cached, the owner must be informed.
The bandwidth cost (and delay) of writing to a file becomes very large, especially if it is
widely cached — but this is offset by the fact that each cached copy represents a saving

of at least one read request for the file.

Clearly, both the client-controlled and the owner-controlled caching systems can be used
simultaneously without interfering with each other. This suggests that the following
caching strategy could be used: when a file is first read, the client retains a copy for
caching, but does not inform the owner. When the file is accessed for a second time the
client checks with the owner that the original has not been changed. If it is unchanged,
then the cached copy is served, and the client informs the owner that it will henceforth

assume its duplicate to be current, until it receives a purge message.

There is one major problem with this scheme: if just one of the registered caching
computers (or its network connection) fails, then the cached file could never be written
to again. Although such a failure is very unlikely, a safeguard must therefore be built
into the system. The following timeout protocol restores stability; its only assumption

is that all computers share a common time scale (not a common clock”):

6 A reply is required for each of these messages, if the network is unreliable, especially if an outdated
copy of a file could affect system consistency — though in certain cases, this is not a consideration.

"Systems share a common clock if they have a common absolute time reference. This is typical only
for computers which are directly attached to each other. However, distant computers without a common
clock can still have a common time scale; they can both pause for 60 seconds.

38

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

Within a pre-specified period of time, each client must transmit an ‘I am alive’ message
to its server. Then, the server responds with a ‘ You are alive’ message. Unless the client
receives the response within the time limit, it must assume that its copy is no longer
valid (because of a network or computer failure). Similarly, if the server receives no
message, it may conclude that the client no longer believes itself to have a valid copy of
the file. Therefore in the case of an error, the file will ultimately revert to a single-owner

stated.

This example illustrates the careful planning needed to ensure that a distributed system

is stable, especially when its communication links are unreliable.

If the cached files were not purged, it might be possible to have two different versions
of the same file on the network simultaneously. In certain situations, this is not a
problem, for example if the files contain successive approximations to the solution of a
mathematical problem — when an improved version becomes available, the older one
can be replaced. A more difficult decision results when two changed versions exist of
one file; an intelligent agent must decide whether to accept one or the other, or attempt

to merge the two into a new solution.?

Conclusions about distributed files

From the discussion above, it is clear that different types of files are used in fundamen-
tally different ways. As a result, it would be simplistic to treat the filing system as a
collection of homogeneous files. Instead, when a process creates a file, it should be able
to specify how the file will be used. Table 7.1 lists the file types which were identified

in the last section.

The ideal way to implement these different file types is by treating each file as an
object, with all files descended from a common abstract ancestor class. Each subclass
could then have its own specialized file handing functions. Furthermore, this object-
oriented approach simplifies the extension of the distributed filing system to a distributed

persistent object system.

8In the case of a distributed-object system, the original object would be the server, while each cached
copy would be a client.

9This is an example of the relativistic difficulties of distributed networks; it is impossible in general
for a group of computers on a network to agree on a common time scale. Some event pairs A and B can
be ordered — for example, it might be possible to state that A definitely occurred before B. However,
other pairs cannot possibly be ordered; there will always be events for which it will be impossible to
determine whether A or B occurred first.

39

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

Frequently changed files May not be cached, unless the owner is consulted every
time to confirm that the file is unchanged.

Frequently used, occasionally changed files May be cached, and the caches should
register that they hold a copy of the file. (A timeout scheme is needed for consis-
tency.)

Read only files Will never be modified, and can spread freely through the network.
However, an owner is still needed to ensure that at least one copy of each file
remains.

Incremental files Will not cause inconsistencies if outdated versions remain on the
network, and are updated late. (This is very useful under heavy network conges-
tion, or when a failure breaks the network into two subnetworks, and is cheap on
bandwidth.) Changes are always made to the original file so that versions of the
file form a linear sequence. (This would be achieved by migrating the file to the
changing computer.)

Mergable, incremental files Can be updated anywhere, by anyone. Local consis-
tency is achieved with a merging algorithm, which intelligently converts two
changed versions of a common ancestor into a new solution. (Each file of this
type would need its own merging algorithm.)

Table 7.1: File types in a distributed system

7.4 Distribution with Java

Java is a computer language which allows the same computer program to run on a
wide range of machines, from mainframes to terminals, and even embedded devices such
as pagers and microwave ovens. For this to happen, each machine must run a ‘Java
Virtual Machine’ (JVM) — although a different JVM must be produced for each type
of computer, the same main program (compiled into ‘Java Byte Code’) can operate

anywhere.

Furthermore, if a number of computers are linked together with a network, and they are
all running JVM’s, then they can use the network to share information. In conventional
systems, data and objects must be translated laboriously into intermediate representa-
tions before being transferred to another computer. However, since all JVM’s share a
common representation for each type of object, Java objects can be transmitted directly
from one computer to another. This is achieved using a mechanism known as ‘object

serialization’.
This makes Java an ideal language for producing a distributed object system, which can

40

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

operate across a heterogeneous network of computers.

Object serialization allows any object to be encapsulated into a stream of bytes, which
can then be stored or transmitted across a network for later use [22]. It then allows the
object to be reconstructed perfectly into its original form wherever it is received. If two
computers agree to communicate across a network, then a program could be used to
transmit an object from one computer to the other. However this does not take place
transparently: a program is required on each computer to either package and transmit

the object, or receive and reconstruct it.

Remote Method Invocation (RMI) is an extension to object serialization, which allows
procedures and methods on a remote computer to be called directly from the local
computer.! The parameters are then automatically transmitted across the network and
reconstructed at the other end. RMI is essentially a pre-configured interface to object

serialization, which makes it simple to create client/server and distributed applications.

A second service which RMI offers is a mechanism for identifying an RMI server by name,
rather than by its physical address. This is another requirement for most distributed
systems; there must be a mechanism which the computers on a network can use to
identify each other on an ongoing basis. A common solution is to dedicate a process
on one computer to identifying all the others, but this works only if the network is
reliable. If the underlying network supports it, then server name broadcast is also
effective, and there are even algorithms in which all computers will attempt to provide
name facilities, which are especially useful when the network is occasionally split into

disjoint subnetworks by physical interruptions.

Thus RMI provides the two essentials for a distributed system: mechanisms for throwing
and catching events, and also a feature for broadcasting server names. Object serializa-

tion can then be used to migrate objects between computers, through these channels.

7.5 Conclusion

Centralised control is often impossible for many real-time control and analysis applica-
tions, since the volume of data produced and the timing constraints on the output would
be overwhelming. The alternative is to distribute the processing of data nearer to the

data source.

The chief difficulty in programming a distributed system is ensuring that information

10This is similar to Remote Procedure Calls (RPC) under UNIX

41

CHAPTER 7. MOTIVATION FOR A DISTRIBUTED OBJECT SYSTEM

is channelled to the computers that most need it. Instead of creating prescriptive and
restrictive high-level mechanisms for this, an architecture is proposed here in which the
data can guide its own migration. In this architecture, objects are used for all data. This
gives far greater flexibility, with little extra programming cost, since specific classes of
data can be derived from abstract superclasses which represent their desired migration

policy.

This architecture has the considerable added advantage that both the data and the
agents that operate on the data can be treated as objects. As a result, both data
and processing can be distributed in the same way, since agents can control their own

migration and propagation through the network.

42

Chapter 8

Truly Distributed Objects

Truly distributed objects should not be restricted to being in only one place at a time.
This chapter develops an approach which enables a family of ordinary migrating objects
to act together as a single object. This technique is explicitly designed into the dis-
tributed object architecture of chapter 9, but it can be used in any distributed object

system.

8.1 Making Distribution Explicit

Just as object-oriented design discipline can be used with non object-oriented languages
(such as C), so too can truly distributed objects be built without explicit support from
the programming language. Nevertheless, an object-oriented language (such as Java)
helps to hide the details with simple syntax, while also providing built-in support for
remote access and externalization of objects (through Remote Method Invocation and

object serialization).

The challenge of distributed objects is deciding how explicit the distribution should
be. As discussed in section 4.4, architectures such as PVM [27] hide distribution com-
pletely, treating a network of distributed computers as a single computer. In contrast,
CORBA makes explicit which calls affect remote objects (but object migration facilities
in CORBA are still very limited). These approaches are different because they make dif-
ferent assumptions about the network connecting computers: PVM implicitly assumes
that the network is usually reliable, and that computers are relatively close to each other
with high bandwidth, low lag connections, while CORBA assumes that the network is

unreliable and unstable.

43

CHAPTER 8. TRULY DISTRIBUTED OBJECTS

The speed of the network affects the granularity! at which parallelism and distribution
is useful; a fast and reliable network (relative to CPU speed) is needed to make fine
grained parallelism worthwhile [25]. When programmers write software for a particular
distributed architecture, they choose a design which reflects the expected network ef-
fectiveness. Therefore, the programming architecture should allow the programmer to

explicitly distinguish between local and remote objects.

It would be ideal to be able to treat local and remote objects in exactly the same way.
However, an imperfect network makes this an unattainable goal. Remote objects can
fail in ways which are impossible for local objects. Furthermore, it is impossible to
evaluate whether a local or remote call would be more efficient, without knowing the

time overhead associated with the remote call, in advance.

8.2 Comparing Mobile Objects and Distributed Objects

The phrase ‘Distributed Object’ is often used to refer to an object in a computer system
which can operate somewhere other than on the server computer. The implication here
is that a distributed object is an object which can operate anywhere. This is extremely
useful for dividing business applications into a three-tier hierarchy of clients, middle-ware
business logic, and servers [23] — the same code can be reused in all of these locations.
In the same sense, Java applets? can also be referred to as distributed objects, when
they are in fact simply objects that can begin their execution anywhere. In Object

Management Group (OMG) terminology, they are ‘stationary agents’ [28, p. 7].

More complicated than these are objects which begin execution on one computer, and
can then move to another computer. An ability to do this requires that extra features
be provided by the operating system or system architecture, to enable remote injection
of objects into a computer. According to the OMG, these ‘mobile agent’ objects require

capabilities which many current distributed object systems do not offer.

Both systems described above assume that an object can be in only one place at any
one time. However, just as it is useful for a multi-threaded program to operate on more
than one CPU at a time, it is also useful for a distributed object to use more than one

computer at once. A system which enables such true distribution is proposed below.

! Granularity is the optimal size of code fragments to be shared between computers.
2Tiny programs inserted into web pages on the internet

44

CHAPTER 8. TRULY DISTRIBUTED OBJECTS

8.3 Truly Distributed Objects

A family of distributed objects can cooperate, to act together as a single object.

An important assumption of object oriented programming is that objects are completely
specified by their interfaces. In other words, the internal state of an object is completely
hidden from other objects, except where it is revealed by the methods (or public data
members) of the object. This means that the code for an object could be rewritten
completely, and the other objects would remain entirely unaware of this, provided the

behaviour of the interfaces did not change.

This assumption is used by the Java RMI classes — when access to a remote object is
needed, a local proxy [29, p. 207] object is created which passes the method call param-
eters across the network. The original object then performs the required computation,
and the result is returned via the proxy object. Here, both the original object and the
proxy behave in the same way, and from the perspective of the class interfaces, they
might as well be the same object. In a sense, they are both simply interfaces onto the

same conceptual object.

A ‘truly distributed object’ is the name used here for such a conceptual object. It
is distributed in that it is spread across many computers. It may have many smaller
constituent objects, but they all provide the same interface behaviour, and are thus
simply representatives of the larger whole. A second requirement for a truly distributed
object is that it must be accessible from anywhere — or at least from any computer

which is part of the distributed object system.

Java RMI fulfils both of these requirements. However, it allows only one pattern for
implementing truly distributed objects. In the case of RMI, each truly distributed
object is functionally implemented by exactly one of the physical objects in the system;
all of the rest of the objects are merely proxies. However, this need not necessarily be

true.

The information need not all be held by just one object. Instead, a group of objects can
all behave as interfaces to the truly distributed object, and yet have their information
distributed between them. A simple example would be a truly distributed object that
implemented a distributed file system. Files could be stored where they were created, and
yet be accessible from anywhere. In this example, no single object contains the entire
state of the system, unlike RMI. Other truly distributed objects include distributed

computation engines, and distributed databases.

45

CHAPTER 8. TRULY DISTRIBUTED OBJECTS

In fact, any computer program which operates across many computers can be seen as
an example of a truly distributed object. What is interesting is that truly distributed
objects make no restrictions upon the internal structure of the system — all client-
server architectures are just a small subset of the set of possible truly distributed object
systems. Whenever a group of objects, on different computers, work together to perform

a single task, the result is a truly distributed object.

Truly distributed objects have certain extra requirements over ordinary objects. Given

a reference to a truly distributed object:

1. There must be a mechanism for obtaining access to the local representative of that

particular truly distributed object.

2. If there is no local representative, then access to a remote representative must be

possible.

3. For this, there must also be a mechanism for communicating with both local and

remote representatives of a truly distributed object.

The first two points above require a scheme for uniquely identifying a truly distributed
object; this object naming is described in the following section. The third requirement,
for communication, must be a feature of the distributed object system being used, and

it is a feature of the architectural specification developed in chapter 9.

8.4 Naming of Truly Distributed Objects

For distributed objects to be able to cooperate, a mechanism is needed whereby objects
can locate each other, for example by name. One mechanism frequently used for this
is for each object to have associated with it a name and a location. This works well
for objects which remain in the place where they were created. A refinement is to
associate each object with its original location, and a unique name within that location.
When the object moves to a new computer, the original location keeps a reference to the
object’s new location, so that the object can always be located by name. There are also

mechanisms for anonymous communication between objects, using ‘badges’ [30, p. 9]

Most current systems, including CORBA and DCOM, presuppose that an object is in
one place at any moment [30, p. 3] — if an object were to split into two objects, in order

to perform a task, each of these objects would have a different name.

46

CHAPTER 8. TRULY DISTRIBUTED OBJECTS

For distributed processing it is useful to be able to subdivide a single task across many
computer systems, while still retaining one name for all of the subsections of the task.
For example, if two objects in two different rooms (on two different computers) were both
attempting to follow the movements of the same person, then those objects should have
the same name, and should be addressed in the same way. It is then the responsibility
of objects sharing a name, to coordinate their activities in order to present a consistent

front to other objects.

8.5 Conclusion

Truly distributed objects enable a group of objects to act together as a single object,
under a single name. This tool allows data hiding in distributed systems, just as ordi-
nary objects enable data hiding in conventional object-oriented systems. In this way, a
distributed system can be designed more easily than before, as a group of interacting

truly distributed objects.

47

Chapter 9
Architectural Specification

Distributed objects require a computer environment which enables them to migrate
between different computers. This chapter gives a precise specification of a computer

architecture for distributed objects.

The architecture is specified entirely in terms of the services which it provides to dis-
tributed objects, which makes it independent of the programming language in which
it is implemented. The specification also makes clear the separation of responsibility,
between the distributed object system and the distributed objects within it. The wider

implications of this specification are expanded upon in section 9.2.

9.1 Specification

The assumptions below specify an environment for distributed objects to inhabit. The

basic assumptions are

1. All objects in the universe are Java objects.

2. There are two categories of object in the universe: ordinary objects and ‘Re-
moteObjects’. RemoteObjects are actually ordinary objects with certain extra

properties, described below in assumptions 4, 5, 6 and 7.!

3. The universe in which objects reside is divided into a number of ‘Places’ [28, p. 10].

If two objects are in the same Place, then they can communicate with each other

IThe term ‘object’ often denotes both ordinary objects and RemoteObjects, when its use is unam-
biguous.

49

CHAPTER 9. ARCHITECTURAL SPECIFICATION

directly. Otherwise, they can communicate only indirectly. (Thus each Place has

its own separate Java Virtual Machine).

4. There is a mechanism which enables any object to send a message to a particular

RemoteObject in a given Place, and receive a reply [31].

5. When a RemoteObject is first created in a particular Place, it is assigned a unique

‘Name’ — unique across all Places.

6. If a RemoteObject is located in one Place, a ‘Copy’ of the object can be made
to any other Place. This new RemoteObject has the same Name as the original,
even though it is located in a different Place. The original object is responsible
for actually producing the Copy, although any object may request that a copy be

made.

7. A Copy of a RemoteObject is not necessarily identical to the original. Rather, its
aim is to provide the same functionality as the original — the Copy is a proxy that
provides access to the object’s data. Thus the conglomeration of objects with the
same Name form a ‘SuperObject’.? These objects are discussed in more detail in

chapter 8, as ‘truly distributed objects’.

8. Each Place maintains a list of RemoteObjects located there, and this list is acces-
sible to all objects in the universe. (When a Copy of a RemoteObject is made in

a new Place, the Copy is added to the new Place’s list.)

9. There is a ‘Directory’, which lists all available Places. This Directory is also

accessible to all objects in the universe.

A conceptual class diagram for the relationships between these objects is given in fig-

ure 9.1.

9.2 Implications of the Specification

The assumptions above describe a universe within which many objects can co-exist and
interact. Among these can be simple objects, which passively carry pieces of information
from computer to computer. There can also be more advanced objects, which combine

these elementary items of information, to draw more advanced conclusions.

2 A SuperObject is essentially a distributed equivalent of an ordinary object. The difference between
a SuperObject and a conventional distributed agent [28, p. 7] is that a SuperObject can be in many
Places at once, while an agent may move between Places, but is limited to one location at a time. In
this context, a SuperObject can offer the same services as a family of agents.

50

CHAPTER 9. ARCHITECTURAL SPECIFICATION

Directory
1

*

Place

1

*

RemoteObject 7 Name

Name : Place

Figure 9.1: Conceptual class diagram

Objects can effectively move from one computer to another, since the original can cause
a Copy of itself to be made at a new location. In addition, the Directory allows objects
to discover which computers are available. As a result, an object can move itself to any
computer in the universe. Thus, the universe is essentially one large computer, from
the perspective of an object within it, since any object can access any other object from

anywhere.

Places give RemoteObjects an explicit sense of distance. All objects which are located
in the same Place are nearby and easily (speedily, cheaply) accessible; all objects not in

the same Place are more expensive to access.

Places also allow a certain degree of security for objects, since RemoteObjects are re-
sponsible for making Copies of themselves. For example, an object containing sensitive
information could refuse to allow a Copy of itself to be made, or it could send a dummy

as a Copy, and allow sensitive information to be released only to pre-specified Places.

The universe allows objects to practise advanced migration strategies. The simplest
technique is to allow no migration at all. Another technique is for an object to simply
duplicate its information when a Copy is required. In that case, the original and the
Copy will be entirely independent; if one is changed, the other will remain unaltered. A
more advanced implementation might allow a single item of data to be shared between a
number of Places, with the actual data item being moved to wherever it was needed, on
demand. In that case, a group of RemoteObjects (all with the same name, but located

in different Places) could provide distributed access to a single shared object.

The mechanisms required for these migration techniques are discussed in detail in sec-

tion 11.5, where class ProtoMigrator is developed to demonstrate this behaviour.
The fact that RemoteObjects are responsible for Copying themselves provides great

ol

CHAPTER 9. ARCHITECTURAL SPECIFICATION

flexibility in the interpretation and implementation of RemoteObjects. For example,
RemoteObjects need not represent only data; they could have executing processes asso-
ciated with them too. A distributed computation engine could be established so that,
wherever the RemoteObjects were registered, a new thread of execution would be cre-
ated. These threads (one per Place) could cooperate to solve the problem at hand. An

example of a program which uses this strategy is presented in section 11.9.

9.3 Conclusion: A Metaphor for the Architecture

This section presents a metaphor for describing the architecture of the distributed object

system as a number of cities.

Each Place in a distributed object system can be seen as a city. Within that city,
there are many people, representing RemoteObjects. Each person also has an address
at which they can be contacted, like Names in the distributed object world. People can
communicate with each other, either within a city, or across cities, but communication
with other people in the same city is considerably quicker and easier than communicating
with another city. This is because a letter to another city could be delayed or lost in the

mail. There are also similar risks for a person travelling between cities.

In the distributed world, a SuperObject is a group of RemoteObjects that do the same
job in different places, and share a common Name. Similarly, in the metaphor, a group of
people who do the same job can be considered to belong to the same company. If a person
needs to communicate with the company, he or she approaches the local representative

first, and contacts the company’s head office only if essential.

Finally, each city has a directory, listing all of the People there, and the central post
office has a directory of postal codes, listing every city. This is analogous to the listing

service and Directory in the world of RemoteObjects.

This metaphor helps to illustrate the crucial differences between local objects and Re-
moteObjects — there can be delays and risks in moving between Places, which do not
occur for objects which remain in the same Place. It also shows why a family of objects
can work together more efficiently than one peripatetic, roaming object. A roaming
object cannot be in two places at once, and therefore it incurs large costs when it must

communicate with other objects in different Places simultaneously [32].

52

Chapter 10
Implementation

This chapter describes an architecture which was developed to satisfy the specifications

of chapter 9.

The architecture allows distributed objects to share a network of computers for in-
formation processing, and it is upon this architecture that a ‘Smart Building’ will be

demonstrated.

10.1 Correspondence between Classes and Specification

The Java classes contained in package db.smartroom.server implement a distributed
object architecture. This section details how the classes used in that architecture corre-
spond to the architectural specification of section 9.1. Each point in that specification

has a correspondingly numbered point here, describing how it is fulfilled.
1. All objects in the system are Java objects. Typewriter text is used to denote Java
class names, and also for Java source code extracts.
2. ‘RemoteObjects’ are those objects which implement the RemoteObject interface.

3. Each ‘Place’ corresponds to a FileServer — wusually an instance of

FileServerImpl.

4. Each RemoteObject has a communicate method, so that messages can be sent to
it. FileServers also have communicate methods, to enable communication with
RemoteObjects from other Java Virtual Machines. The return value of a call to

communicate enables the RemoteObject to reply to each message.

93

CHAPTER 10. IMPLEMENTATION

5. ‘Names’ correspond to RemoteReferences; a RemoteReference to an ob-
ject can be obtained with RemoteObject.getHome(); it is assigned using
RemoteObject.register(). Two RemoteObjects a and b have the same Name if
their RemoteReferences are equal — i.e. if a.getHome() .equals(b.getHome())
For convenience, the equals method of class RemoteObject is overridden, so that

the expression above may be simplified to a.equals(b).

6. RemoteObjects can be Copied by calling FileServer.open(ref) on a remote
FileServer. Java’s serialization and deserialization process causes the Copy to be

made.

7. The local copy of a RemoteObject is accessed (from RemoteReference ref) with
a call to LocalFileServer.get () .open(ref); if the object is found locally, a local
reference to it is returned. If not, null is returned, and the object can be accessed

using ref .open()

8. To obtain the list of objects on a FileServer, the FileServer.listFiles () method

is used.

9. The ‘Directory’ is provided by implementations of FileServerLister, such as

FileServerListerImpl.

From the list above, it can be seen that all of the requirements of the architectural
specification are fulfilled by this implementation. The list also makes clear how Java

classes correspond to the elements of the conceptual model.

10.2 Class Overview

The following Java classes and interfaces form the core of the architecture which was

developed. They are all part of package db.smartroom. server.

FileServer A FileServer is created on each Java Virtual Machine; all of the
FileServers together produce the space in which distributed objects can cooper-
ate. This interface is RMI-enabled; in other words, remote method calls can be

made to those classes which implement this interface.

FileServerLister FileServerListers enable objects to find FileServers (other than
the local one). This interface is also RMI-enabled, allowing remote access from
other JVMs.

o4

CHAPTER 10. IMPLEMENTATION

RemoteObject Each distributed object (or ‘RemoteObject’) must implement the meth-
ods of interface RemoteObject. It is this interface which describes how objects

interact with FileServers when they are created or duplicated.

RemoteReference Each RemoteObject is assigned a RemoteReference when it is first
created on a FileServer. This RemoteReference uniquely identifies the object

throughout the computer system.

LocalFileServer This class facilitates access to a FileServer and a FileServerLister
on each Java Virtual Machine. If a FileServer is called for, and none ex-
ists yet, a new FileServerImpl implementation is created; similarly, if a new

FileServerListerImpl will be provided if needed.

FileServerImpl This is a simple but thread-safe implementation of the FileServer
interface. It maintains a list of all RemoteObjects stored on a particular virtual
machine. (This class is RMI enabled.)

FileServerListerImpl This class implements FileServerLister, and is RMI enabled.
This implementation assumes that the is only one FileServerLister in the sys-

tem.

Figure 10.1 is a class diagram, which shows how these classes and interfaces interrelate.

1
LocalFileServer [FileServerLister
1 1| 1
FileServer
L'l
1] | e
FileServerImpl FileServerImpl Stub
g 1 1
FileEvent
- 1
FileListener Rl RemoteObject [7 RemoteReference
AbstractRemoteObject
z=

| |

ProtoMigrator ProtoReplicator

Figure 10.1: Class diagram of package db.smartroom.server

55

CHAPTER 10. IMPLEMENTATION

10.3 Details of the Implementation

Class FileServer

FileServers form the structure of the space in which distributed objects reside. Each
RemoteObject is associated with a specific FileServer, which acts as its home base.
Although copies of the object may be made to other FileServers, a copy of the object
always remains at the home base. As a result, a RemoteObject can always be accessed,
just by knowing its RemoteReference. In other words, a RemoteReference not only

uniquely identifies a RemoteObject; it also makes it possible to locate that object.

FileServers allow objects to be created, accessed, listed and deleted, both remotely
and locally. They act as storage points for RemoteObjects, as name servers for giving
RemoteObjects unique identifiers, and as interface points to allow other tasks to access
the objects. It is also possible to add FileListeners to a FileServer; these listeners are
notified whenever a change is made to the objects on the FileServer. Notifiable changes
include creating a new file, deleting a file, and attempting to recreate a duplicate file on a
FileServer. Each change is sent as a FileEvent object, which identifies the RemoteObject

affected, and also the type of change which occurred.

Class RemotelObject

RemoteObjects are the primary inhabitants of the universe created by the FileServers.
Each RemoteObject is identified by the RemoteReference returned by its getHome ()
method.

The life-cycle of a typical RemoteObject is as follows:

1. Before it is first registered with a FileServer, a RemoteObject obj behaves just
as any other Java object; because it implements the Serializable interface, it
can be converted into a stream of bytes and transmitted from one computer to

another, or temporarily stored on disk.

2. At some point, obj will be associated with a certain FileServer filesrv, as the

result of a call such as filesrv.create(obj).

3. obj’s register method will be called, with a unique RemoteReference ref which

identifies obj.

56

CHAPTER 10. IMPLEMENTATION

4. The object which results from the call to register is stored in a list on filesrv.

At this point, filesrv.create returns the RemoteReference to its caller.

5. When obj needs to be accessed, a call is made to filesrv.open(ref). If the
call is made from the same Java Virtual Machine on which obj is stored, then a
local reference to obj is returned. Otherwise if a remote request has been made,
obj is serialized, transmitted across the network, and deserialized on the caller’s
JVM. The deserialized copy of obj will then typically register itself with the new
FileServer located there. (This re-registration will be made with the same home

location as obj, and with filesrv as the home FileServer.)

If the RemoteObject is not listed on the FileServer which is being called, null is
returned. This enables the caller to decide whether to retrieve the RemoteObject

from its home location, and to check whether a local copy of the object exists.

More specific information about using the classes of package db.smartroom.server is
contained in the javadoc documentation comments embedded in the class files; ap-
pendix A includes a summary of this information. The source code for the example

programs of chapter 11 demonstrates how the classes are typically used.

10.4 Conclusion

The classes developed in this chapter fulfil all of the specifications of chapter 9, pro-
viding a suitable environment for distributed objects to inhabit. The examples of the
following chapter also help to prove that this implementation performs according to its
specification, and that the specification is indeed useful in typical distributed object

scenarios.

o7

Chapter 11
Testing and Verification

The distributed object system implemented in chapter 10 is shown to be effective by the

example programs of this chapter.

A set of programs was developed to test and exercise the system, in order to demonstrate
that the architecture developed in this part of the dissertation performs according to
its specification. They also serve as prototypes for typical applications of distributed
objects, while proving that common problems can indeed be solved effectively using
distributed objects. This chapter describes the purpose and results of each of these

programs.

The list below gives an overview of the experiments described in this chapter and their

objectives, by section number.

11.1 RemoteObjects can be created and accessed using the local FileServer.

11.2 FileServerListers enable FileServers on other Java Virtual Machines or other com-

puters to be located.
11.3 Objects can be created on a FileServer remotely.
11.4 Data can be replicated to wherever it is needed, automatically.
11.5 A single item of data can be shared across computers.

11.6 This sharing is robust, even when different sources try to access the data simulta-

neously.

11.7 RemoteObjects may be graphical objects.

59

CHAPTER 11. TESTING AND VERIFICATION

11.8 RemoteObjects may act as proxies for other RemoteObjects (and thus may also

act as graphical interfaces to those objects).

11.9 RemoteODbjects can be used to implement distributed computation engines.

Full instructions for using these demonstrations are included in the README.TXT file, on
the CD-ROM which is included with this dissertation. Abbreviated instructions follow.

To run any of these demonstrations, first ensure that Java 2 (the Java Develop-
ment Kit, version 1.2) is installed on a computer. The demonstrations will oper-
ate on any computer platform that supports Java 2, but convenient batch files are
written for Microsoft Windows. Next, include the /Classes directory of the CD-
ROM in the classpath environmental variable. Then either type in the commands
included with an example, or change to the appropriate directory to run the batch
files. For example, to run the MakeServer.bat batch file of example 11.2, change
to the /Source/db/smartroom/server/debug directory of the CD-ROM, and run
MakeServer.bat

11.1 Demonstration of Local Object Creation and Listing
Aim
To show how objects can be created on a FileServer, and then how a list of the resulting

objects can be obtained locally (on the same Java Virtual Machine).

Method

The main method of Java class db. smartroom. server.debug.LocalCreate accesses the
local FileServer, and creates three instances of class LocalCreate there. Each of these
objects displays the list of available objects, waits 10 seconds, then retrieves and displays

the list again.

To run the program, execute the following command on any computer:

oldjava db.smartroom.server.debug.LocalCreate

60

CHAPTER 11. TESTING AND VERIFICATION
Results

As the objects are created, they show a progressively growing list of RemoteReferences.
These objects also demonstrate that the methods of the FileServer class are thread-
safe, since they attempt to access the file list from another thread during the object

registration process.

From the output of this program, it can be seen that the FileServer’s object list is locked
while a new object is being registered there. (In other words, no other process can access
the list, while one object is being registered.) The reason for this is to ensure that the
newly registered object is guaranteed to be on the list for any new threads created during
the registration process. A corollary of this is that register methods should not perform
time-consuming operations before returning (since these would then block all access to

the file list), but should instead delegate them to a separate thread.

11.2 Listing of File Servers
Aim

To demonstrate the FileServerLister class, and how it enables objects to locate File-

Servers on different Java Virtual Machines.

Method

The main method of class db.smartroom.server.debug.TestLister lists all accessi-
ble FileServers listed with the local FileServerLister. (The preferred location for ref-
erencing the FileServerLister may be given as a command line parameter.) Class
db.smartroom. server .debug.MakeServer has a main method which creates a File-
Server with no files on it. This is used to set up a FileServer on another computer,

without initially creating any objects on it.

To run the program, first make the db.smartroom classes available on a web server, at

some location ‘URL’. Next create a file ‘rmipolicy’ containing the following:

grant {
permission java.net.SocketPermission "*", "accept,

connect, listen, resolve";

61

CHAPTER 11. TESTING AND VERIFICATION

};

Execute ‘rmiregistry’ on a particular computer XYZ, where XYZ is the computer’s

DNS name or IP address. Then, on any number of computers, execute

java -Djava.security.policy=rmipolicy -Djava.rmi.server

.codebase=URL db.smartroom.server.debug.MakeServer XYZ

Finally run the following command on the first computer:

java -Djava.security.policy=rmipolicy -Djava.rmi.server

.codebase=URL db.smartroom.server.debug.TestLister XYZ

The batch files ‘MakeServer.bat XYZ' and ‘TestLister.bat XYZ’' in the
db/smartroom/server/debug directory execute these commands, and a copy of

‘rmipolicy’ is also in that directory.

Results

Remote Method Invocation These programs provide a working demonstration that
Java Remote Method Invocation (RMI) can practically connect objects on different
JVM’s. In this case, a number of FileServers (on different JVM’s, and possibly on differ-
ent computers) all connect to a single FileServerLister, and store their details there, using
RMI. Then, again using RMI, the TestLister program connects to the FileServerLister

to retrieve the list of FileServers.

This remote calling of the methods of an object is crucial to the distributed architecture;

it is this that enables RemoteObjects to be accessed remotely through FileServers.

Java Security Model The new Java 2 security model is also used in this example.
By default, all applets and applications are restricted in which system resources they
can access [33]. For this example, a security policy file is created, in order to extend the
rights of the demonstration programs; in this case, extra permission is granted to allow
access to any network location. ‘modifyThreadGroup’ permission is also given, to allow

threads to sleep.

62

CHAPTER 11. TESTING AND VERIFICATION

11.3 Remote Object Creation
Aim

To show how an object can be created on a FileServer remotely (i.e. from a different
Java Virtual Machine).

Method

Class db.smartroom. server.debug.RemoteCreate’s main method creates a simple Re-

moteObject on every FileServer it can locate.

To run this example, run ‘rmiregistry’ on computer XYZ, as in experiment 11.2.
Then execute ‘MakeServer.bat XYZ’ on any number of computers, and finally

‘RemoteCreate.bat XYZ’ on one computer.

Results

On each computer running a FileServer, RemoteCreate creates a
db.smartroom.server.debug.LocalCreate object, with a title such as ‘LC#1’
or ‘LC#2’. Since LocalCreate does not override the default serialization mechanism,
and it follows the conventions of db.smartroom.server.AbstractRemoteObject, the
object is first constructed on one JVM, and is then duplicated exactly to its new

location.

LocalCreate has no serializable fields except for the object title, so that is the only
additional information that is included when it is created remotely. When this example
is run, it can be seen that this information is indeed transmitted, and stored on each

FileServer. This is shown in the sample output below.

On the computer where RemoteCreate.bat was run, the sample output was:

Obtaining list of FileServers

Created LocalCreate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:2276] (remote),
objID: [5876c40b:d8fc431958:-8000, 0]111]

Created LocalCreate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref:[endpoint:[137.158.135.197:2284] (remote),

63

CHAPTER 11. TESTING AND VERIFICATION

objID: [5ad4c407:d8fc43418f:-8000, 0111]

Created LocalCreate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref:[endpoint:[137.158.135.197:2288] (remote),
objID: [5ad9c407:d8fc4343£2:-8000, 01]1]1]

Total FileServers found: 3

On the first FileServer, the output was

Registering LC#1@null

List of files while registering: []

New Thread started

Have created new file: LC#1@RemoteReference(0:1)
Files before delay: [RemoteReference(0:1)]

Files after delay: [RemoteReference(0:1)]

On the second FileServer, the output was

Registering LC#2@null

List of files while registering: []

New Thread started

Have created new file: LC#20RemoteReference(0:1)
Files before delay: [RemoteReference(0:1)]

Files after delay: [RemoteReference(0:1)]

On the third FileServer, the output was

Registering LC#3@null

List of files while registering: []

New Thread started

Have created new file: LC#30@RemoteReference(0:1)
Files before delay: [RemoteReference(0:1)]

Files after delay: [RemoteReference(0:1)]

64

CHAPTER 11. TESTING AND VERIFICATION

11.4 Replicating Objects
Aim

To prove that an unchanging piece of information can be shared between FileServers,
through a collection of RemoteObjects. (Alternatively, the information may be allowed
to change, but the different versions of it will remain independent — so that changes to

one copy of the information affect none of the other copies.)

Method

The item of data which must migrate is attached to a RemoteObject of class
db.smartroom.server.ProtoReplicator. Whenever the ProtoMigrator is copied to
another FileServer, the data item moves with it. The migrating must be serializable,
but there are no other restrictions on it. This allows the replication behaviour to be sepa-
rated entirely from the object which is being replicated. ProtoReplicator is implemented
as a simple extension of AbstractRemoteObject, which describes typical behaviour for a
RemoteObject. It adds a non-transient data field to hold the data item, and a method

for accessing it.

Class db.smartroom.server.debug.Replicator extends ProtoReplicator by adding
methods to duplicate the Replicator to all available FileServers, and display a mes-
sage wherever it is created. The copies are shown to be independent by changing the

shared text message with each iteration.

This example can be run in the same way as experiment 11.3, using Replicate.bat

instead of RemoteCreate.bat.

Results

From the sample output shown below, it is clear that the text messages associated with

the Replicator objects are independent of each other.

On the computer where Replicate.bat was run, sample output was:

Created Replicate on
db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:1076] (remote),

65

CHAPTER 11. TESTING AND VERIFICATION

objID: [5ad517ee:d9016bf440:-8000, 01111
On the first FileServer, the output was

Have registered MyReplicator

Duplicating object

Delay for 5 seconds

Created duplicate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:1076] (remote),
objID: [0111]

Created duplicate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:1083] (remote),
objID: [6ad517fb:d9016c1£47:-8000, 0]11]

Created duplicate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:1087] (remote),
objID: [5ad517fb:d9016c21be:-8000, 0]111]

Object name is now MyReplicator, Original
On the second FileServer, the output was

Have registered MyReplicator, Copy 2
Delay for 5 seconds

Object name is now MyReplicator, Copy 2
On the third FileServer, the output was

Have registered MyReplicator, Copy 3
Delay for 5 seconds

Object name is now MyReplicator, Copy 3

11.5 Migrating Objects
Aim

To demonstrate how a single item of data can be shared across a number of FileServers.

Whenever the data is needed on one FileServer, it must automatically migrate there

66

CHAPTER 11. TESTING AND VERIFICATION

from wherever it is currently stored. However, if the data is currently in use, it must
migrate as soon as possible after it is freed. Using this mechanism, many computers

could share a single counter, or any other changeable data item.

Method

Class db.smartroom.server .ProtoMigrator acts as a proxy for the migrating data item
(described henceforth as the ‘data object’). Thus, any object which needs access to the
data object must communicate with the corresponding ProtoMigrator instead. (This
ProtoMigrator is actually a RemoteObject, which can list itself on a FileServer.) When
the data object is called for, the ProtoMigrator checks whether it is available locally.
If not, it then checks the object’s ‘home’ location (where it was first created). The
ProtoMigrator at the home location either provides the data object immediately, or
retrieves it from its current location instead. Thus all object migration (for a particular
data object) is directed through the object’s home location. Furthermore, the home

ProtoMigrator always knows the current location of the object.

To implement this class, however, synchronization issues must also be taken into ac-
count [34]. For example, the implementation must ensure that it is impossible for a
deadlock to result, even if many threads are current active within each ProtoMigrator,
even when the ProtoMigrators (which share a common home) are located on different

FileServers.

To run this example, run ‘rmiregistry’ on computer XYZ, as in experiment 11.2.
Then execute ‘MakeServer.bat XYZ’ on any number of computers, and finally

‘Migrate.bat XYZ’ on one computer.

Implementation

The requirements of a migrating object

Class db.smartroom. server.ProtoMigrator allows a single object to be shared across
a number of FileServers. In order for this to work, different copies of the ProtoMigrator
object (on the different FileServers) must coordinate their activities to keep track of the

floating object. To do this, each ProtoMigrator is allocated one of five essential states:

1. Before registration — state B+

67

CHAPTER 11. TESTING AND VERIFICATION

2. Home with object — state H+
3. Home without object — state H-
4. Elsewhere with object — state E+

5. Elsewhere without object — state E-

In each of these states, a ProtoMigrator can receive any of the following requests:

1. Obtain the object (getMigrator)
2. Relinquish the object (communicate)
3. Serialize yourself!

4. Register with local FileServer (register)

Furthermore, each ProtoMigrator must ensure that its state remains consistent, even
in the face of many, simultaneous requests. It must also ensure that it never enters a
deadlock situation, in which two copies of a particular object are each engaged in waiting

for the other to complete mutually exclusive tasks.

Details of object states

Each ProtoMigrator object retains its state in its data variables. There are five essential

variables.

home is inherited from AbstractRemoteObject, and stores the FileServer and the
name which together uniquely identify this object. If this variable is null,
then the state is B+. Otherwise, the FileServer referenced by home will
always hold an instance of this particular ProtoMigrator, and thus home is
used as a base for accessing the migrating data object. home is serialized

normally; its state is preserved when the ProtoMigrator is serialized.

transport is used whenever the data object needs to be moved from one computer to
another. It is serialized normally, and is used only in state B+. At all other

times, its value is null.

'In the case of a ProtoMigrator, the serialization is automatically performed — however, some data
fields are allowed to be serialized, while others are not, and in this way, serialization enables the state
of the transmitted object to change. Serialization occurs whenever the object moves from one JVM to
another. Serializing does not remove the original object, but instead creates another copy of it.

68

CHAPTER 11. TESTING AND VERIFICATION

gotObject is a boolean variable, which states whether or not the data object is present
in the myObject field. It is not serialized, and will thus revert to false when-

ever the ProtoMigrator is serialized.

myObject stores the data object, whenever it is accessible at a particular computer.
In states H- and E-, its value is null. In states H+ and E+, it holds the
object and is non-null (unless the data object is null). In state B+, its
value is unimportant. This is a transient field, and is not serialized; instead

myObject is automatically made null on deserialization.

currentHome represents the last known location of the data object. This field is non-
null only in state H-, since only the home ProtoMigrator needs to keep
track of the data object’s location when it is not at home. This field is not

serialized.

From this, a table of states versus data item values can be produced, as shown in
figure 11.1. (The column entitled ‘at home?’ shows whether the locally accessible

FileServer is the same as the FileServer contained in the home field2.)

‘ State ‘ home ‘ transport ‘ gotObject ‘ myObject ‘ currentHome ‘ at home?
B+ null data object | true/false anything null no
H+ | non-null null true data object null yes
H- | non-null null false null non-null yes
E+ | non-null null true data object null no
E- | non-null null false null null no

Table 11.1: ProtoMigrator state and corresponding data item values.

Thus each state may be characterised by the values of its data items, as in figure 11.2.

‘ State ‘ Characteristic expression ‘
B+ home == null

H+ (home.getFileServer() == local FileServer) && (gotObject)
H- | (home.getFileServer() == local FileServer) && (!gotObject)
E+ (home .getFileServer() != local FileServer) && (gotObject)
E- | (home.getFileServer() != local FileServer) && (!'gotObject)

Table 11.2: Characteristic expression for identifying migrator states.

2The FileServer locally accessible to the ProtoMigrator is not a data item, but is accessible to all
objects, and thus represents part of the state accessible to the ProtoMigrator.

69

CHAPTER 11. TESTING AND VERIFICATION

Object request methods

getMigrator is a request that the data object be moved to this computer. This re-
quest will usually be issued internally by a subclass of ProtoMigrator, to
obtain a lock on the data object. It is also typical to synchronize on the

ProtoMigrator before calling getMigrator (itself a synchronized method3).

communicate is used internally by ProtoMigrators to communicate with each other.
(communicate is part of the RemoteObject interface.) One ProtoMigrator
would call the communicate method of another, in order to retrieve the
data object. The parameter passed to the receiver would be the FileServer
on which the sender was located, and the return value would be the data

object.

readResolve Serialization is handled automatically by Java and the FileServer. When
a ProtoMigrator is deserialized on a FileServer, it immediately registers
itself in the FileServer’s local file list. The home and transport fields are
serialized normally, while the other fields revert to their default values (false

or null) when serialized.

register is called by the local FileServer when a particular object is created on that
FileServer for the first time. The object’s new home is passed as a parameter,
and the returned local object reference will be stored in the FileServer’s file
list.

Migration protocol

State B+ When a ProtoMigrator is created, it begins in state B+, and stores its
data item in the transport field.

getMigrator will result in the data object being copied to the myObject variable, and
gotObject being set to true.

communicate will never be called.

Serialization will not change to object state.

3Synchronizing on an object is a means of ensuring that two processes cannot access the same
object simultaneously. If one thread synchronizes on the object, and then a second thread tries to
do the same, the second thread will be blocked until the first thread releases its synchronization. A
synchronized method of an object automatically synchronizes on the object when it begins, and releases
the synchronization when it has finished.

70

CHAPTER 11. TESTING AND VERIFICATION

When register is called, home is assigned the new home location (which is guaran-
teed not to be null), myObject is overwritten by transport, gotObject is set to true,

transport is set to null, and the state becomes H+.

State H+ If getMigrator is called for a ProtoMigrator in state H+, no action need

be taken, since the data object is already immediately available.

If communicate is called, with parameter P indicating the new home, then myObject
should be returned, while currentHome is set to P, myObject is set to null, gotObject
is set to false, and the state becomes H-. (The state of the caller will change from E- to
E+.)

Serialization will result in a new object with state E-. The original H+ object will remain
and will not be finalized by the Java garbage collection system, since it is referenced in

its home FileServer.

register will never be called for an H+ ProtoMigrator.

State H- getMigrator will cause the home ProtoMigrator to call the communicate
method of the ProtoMigrator at currentHome, with a null parameter. (This callee is
guaranteed to have state E+ currently.) The callee will then return the data object (and
revert to state E-). The data object can then be stored in myObject, gotObject set to

true, and the state becomes H-+.

communicate will be called only by a ProtoMigrator in state F-, trying to obtain the
data object by contacting the ‘home base’. In that case, getMigrator should be called
(to obtain the object), and then the communicate procedure of state H+ should be

followed.
Serialization will result in a new object with state E-.

register will never be called for an H- ProtoMigrator.

State E+ getMigrator will cause no action to be taken — the data object is already

available.

If communicate is called, myObject should be returned, while gotObject is set to false,
myObject is set to null, and the state becomes E-. (This call will only ever be made by

H+ or H-, and the parameter passed to communicate will only ever be null.)

71

CHAPTER 11. TESTING AND VERIFICATION
Serialization will result in a new object with state E-. Since the original E+ object is
registered with its local FileServer, it will not be deleted and the data will not be lost.

register will never be called.

State E- getMigrator will result in a call to the communicate method of the

ProtoMigrator at home, with the local FileServer as parameter.

communicate will never be called. This is because a communicate call is only ever made

to an object in state E+ or an object at its home location (H+ or H-).
Serialization will result in a new object with state E-.

If register is called, the new home location must be the same as home (otherwise an
exception may be thrown). No change needs to be made to the state; the ProtoMigrator

can simply return itself, to be listed in the local FileServer.

Deadlock prevention

Deadlock prevention is achieved by imposing an implicit order on the resources available
in the system [19, p. 226]. Resources must be requested in order, from the top to the
bottom of the following list:

1. Synchronize on an instance of the ProtoMigrator which does not hold the data

object, and is not the home location (i.e. synchronizing on E-)

2. Synchronize on an instance of the ProtoMigrator which is at its home location

(i.e. synchronizing on H- or H+ or B+)

3. Synchronize on an instance of the ProtoMigrator which holds the data object,

but is not at the home location (i.e. synchronizing on E+)

In the system, there will be at most one instance of E+, exactly one of H- or H+ or B+,
and any number of E-’s. However, since no instance of E- ever needs to synchronize on

another E-, there is no possibility of a deadlock resulting from E- synchronizations.

This can also be seen, by observing that a ProtoMigrator in state E- will only ever
initiate calls to other ProtoMigrators is states H- and H+. An H+ or a B+ or an E+

will never initiate such calls. An H- will only call an F+. Furthermore, no calls by

72

CHAPTER 11. TESTING AND VERIFICATION

FileServers to the register method rely on subcalls to other ProtoMigrators. Thus

the resource allocation order will never be violated.

Possible enhancements

The ProtoMigrator class assumes that the network connecting FileServers together is
reliable. However, there may be physical failures in the network, preventing transmission
while the data object is being moved between FileServers. In that case, a copy of the
migrating object should be held back, until transmission is confirmed. If the transmis-
sion fails, then the local copy should be kept until the connection can be re-established.
(However, if this happens, then the local copy cannot be accessed until the network is
repaired. This is because the original data message may have been successfully trans-
mitted, while the reply was lost. If the data object were modified on both the sender

and receiver, then an inconsistent state would result.)

Results

On each computer running a FileServer, a db. smartroom. server.debug.Migrate object
is created. Fach of these objects then displays the value of the shared string. From the
sample output below, the messages between Migrate objects can be seen, as each in

turn accesses the data item.

On the computer where Migrate.bat was run, sample output was:

Created Migrate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:4598] (remote),
objID: [5ac8365e:d90ca5bbb7:-8000, 01111

On the first FileServer, the output was

Registering MyMigrator@Not_Yet_Registered

Have registered MyMigrator@RemoteReference(0:1)

Have created new file: MyMigrator@RemoteReference(0:1)
Duplicating object

Created duplicate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:4598] (remote),
objID:[0]1]1]

73

CHAPTER 11. TESTING AND VERIFICATION

Created duplicate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:4605] (remote),
objID: [5ac8362b:d90cabe741:-8000, 0]11]

Created duplicate on db.smartroom.server.FileServerImpl_Stub
[RemoteStub [ref: [endpoint:[137.158.135.197:4609] (remote),
objID: [5ac8362b:d90cabe9b8:-8000, 0]111]

End of duplications

Fetching migrator...Done; value is MyMigrator,

Copy 3@RemoteReference(0:1)

Communicate (state H-) returning MyMigrator, Copy 3

Communicate (state H-) returning MyMigrator, Copy 3

On the second FileServer, the output was

Registering Data_Not_Present@RemoteReference(0:1)

Have registered Data_Not_Present@RemoteReference(0:1)

Have created new file: Data_Not_Present@RemoteReference(0:1)
Creating a copy on local FileServer

Fetching migrator...Done; value is MyMigrator,

Copy 3@RemoteReference(0:1)

Communicate (state E-) returning MyMigrator, Copy 3

On the third FileServer, the output was

Registering Data_Not_Present@RemoteReference(0:1)

Have registered Data_Not_Present@RemoteReference(0:1)

Have created new file: Data_Not_Present@RemoteReference(0:1)
Creating a copy on local FileServer

Fetching migrator...Done; value is MyMigrator,

Copy 3@RemoteReference(0:1)

74

CHAPTER 11. TESTING AND VERIFICATION

11.6 Migration with Simultaneous Access

Aim

To rigorously test sharing a single counter between many FileServers. A carrier object
is created on every FileServer; each carrier retrieves and increments the shared counter
1000 times (with random delays between increments). If these delays are set to zero, this
test effectively exercises the ProtoMigrator class under the harshest conditions possible,

as many objects simultaneously attempt to use the same counter.

Method

Class db.smartroom.server.debug.MigrateFast simply extends class
db.smartroom.server.ProtoMigrator. The extended class creates a new execu-
tion thread on each computer where its instance is registered with the local FileServer.

This thread then repeatedly increments the shared counter, with an optional delay.

To run this example, run ‘rmiregistry’ on computer XYZ, as in experiment 11.2.
Then execute ‘MakeServer.bat XYZ’ on any number of computers, and finally
‘MigrateFast.bat XYZ DELAY’ on one computer, where DELAY is the maximum value
of the delay in milliseconds between counter increments. If the DELAY parameter is
omitted, it defaults to 0.

Results

Even when the delays are set to zero, the programs still continue to operate, and correctly
interlock in incrementing the counter.

11.7 Demonstration of Graphical RemoteObjects

Aim

To demonstrate that RemoteObjects can at the same time be graphical objects.

75

CHAPTER 11. TESTING AND VERIFICATION

Method

Class db.smartroom.viewer.debug.TestRemoteJPanel is a subclass of class
db.smartroom.viewer.ProtoRemoteJPanel, itself a subclass of javax.swing.JPanel

— one of the basic graphical objects in the new Java graphics hierarchy called ‘Swing’.

A JPanel is ‘a generic lightweight container’, according the Java API specification;
it holds other graphical objects together, in order to display them. A JPanel is not
automatically associated with any screen real estate. Instead, whenever an instance of
the new class db.smartroom.viewer.debug.TestRemoteJPanel is registered on its local

FileServer, it automatically creates a JFrame in which to display itself.

Fach TestRemoteJPanel displays a list of FileServers, and has a ‘create’ button, which
instructs the object to duplicate itself to the selected FileServer. TestRemoteJPanel’s
main method creates a TestRemoteJPanel object on the first FileServer it can find.
When that object is registered, it creates a new window to display itself. By selecting a
FileServer from the list, and clicking the ‘create’ button, the user can instruct the object

to create a duplicate of itself on that FileServer.

To run this example, run ‘rmiregistry’ on computer XYZ, as in experiment 11.2.
Then execute ‘MakeServer.bat XYZ’ on any number of computers, and finally

‘TestRemoteJPanel.bat XYZ’ on one computer.

Results

For this demonstration, MakeServer was run on three computers (Computer 1, Com-

puter 2 and Computer 3), then TestRemoteJPanel was called on a fourth computer.

1. When the main program of TestRemoteJPanel was started, the following window
appeared on the screen of one of the server computers, Computer 1. It shows that
there are three FileServers available (including the one on Computer 1). The other

computers showed no Java Applet Windows.

76

CHAPTER 11. TESTING AND VERIFICATION

Computer 1

E%HemnteJPanel on db.smartro. .

List of FileServers:
dh.smartroom.server.FileSemerimpl_Stub[Remotest...
db.smartroom.zerver FileServerimpl_Stub[RemoteSt..
db.smartroom.zerver FileServerimpl_Stub[RemoteSt..

IW'aming: Applet Windoww

2. The second item in the list of FileServers was selected, and the create button
was pressed. This caused a copy of this RemoteJPanel object to be created on

Computer 2, and a message to be shown on Computer 1. The resulting screen
displays were:

Computer 1 Computer 2
EgiﬁemoteJPanel CLOCIEE T =10 x| | E;% RemotedPanel on db.smartro... O] x|
m [Message Ed List of FileServers:
- 5) dh. smartroom. sener FileSererimpl_Stub[Remaotest..
db] [l TestRemoteJPanel copied successfully. db.smartroom.server. FileServerimpl_Stub[RemaoteSt...

dh.smartroom.sener FileSerermpl_Stub[Remotest...

m Create

- IW'aming: Applet Window [Warning: Applet Window

3. Next, the third FileServer was selected in the window on Computer 2, and the

create button was pressed. This made a copy of the RemoteJPanel to Computer 3,

giving:
Computer 1 Computer 2 Computer 3
3 RemotedPanel on db.smartro... = (Oj] [Message =4 RemotedPanel on db_smartro._. 18] =]
List of FileServers: List of FileServers:
dh.emartroom.server FileSemverimpl_Stub[Remotest.. ﬁ TestRemote.JPanel copied successfuly. dh.smartroom.server FileServerimpl_Stub[RemoteSt
dh.smartroorm. server FileServetimpl_Stub[Remaotest.. — db.smartroom.server FileServerlmpl_Stub[RemoteSt.
dh.smartroorm. server FileServerimpl_Stub[Remaotest.. db.smartroom.server FileServerlmpl_Stub[RemoteSt.
Create Create |
IWaming Applet Wwindow |Waming' Applet Window IWamlng. Applet Window

4. Finally, the third item in Computer 2’s window was selected again. However,
this time it made no change to the windows. This proves that once a particular
RemoteJPanel has been created on a computer, attempting to create another copy

of the same instance will have no effect — the existing copy takes precedence.

7

CHAPTER 11. TESTING AND VERIFICATION

Computer 1

Eg_{;ﬂemnleJPanel on db.smartro...
List of FileServers:
dh.smartroom. server FileSenvetimpl_Stub[Remotest..
dh.smartroom. server FileSernvetimpl_Stub[RemoteSt..
dh.smartroom.server FileSernverimpl_Stub[Remotest...

-10]]

Computer 2
Eg’i RemoteJPanel on db.smartro... H[=]

| List of FileServers:

dh.smartroom. server FileServetimpl_Stub[Remotest..
dh.smartroom. server FileServetimpl_Stub[Remotest...
dh.smartroom. server FileServerimpl_Stub[Remotest..

Computer 3
(O[]

4 RemoteJPanel on db.smartio...
List of FileServers:

dh.smartroom.server FileServerlmpl_Stub[RemoteSt

dh.smartroom.server FileServerlmpl_Stub[RemoteSt

db.smartroom.server.FileServerlmpl_Stuh[RemoteSt,

|Wam|ng Applet Window

|Wam|ng Applet Window I'\A/aming: Lpplet Windaw

This experiment shows that graphical objects can be included easily into the distributed
object system. It demonstrates that the system can feature interactive objects, as well
as objects with predefined behaviour. This is very useful, because it allows a user to
directly modify information in the system, and view new information as it appears. The
user could be an operator, monitoring the system state, or there could be a group of

users working cooperatively, from different computers.

11.8 Graphical RemoteObjects Other

RemoteObjects

Wrapping

Aim

To show how a graphical object can act as an intermediary for another RemoteObject.

Method

Class

db.smartroom.viewer.demo.CounterWindow.

db.smartroom.viewer.debug.TestWindow trivially extends
A CounterWindow displays and al-
lows interactive control of any db.smartroom.viewer.demo.Counter object that
implements the RemoteObject interface. (This includes migrating or replicating
Counter implementations). The CounterWindow registers itself separately as a Remo-
teObject, so the Counter which it is viewing is moved independently from the viewing
window. However, this class does itself implement the Counter interface, so if it is used
in place of the Counter which it is mirroring, the original Counter and the viewer will

migrate together.

Thus the CounterWindow acts as a stand-in for the Counter which it carries. Wherever
the CounterWindow goes, the original Counter will follow. (This essential behaviour

is contained in db.smartroom.viewer .ProtoCarrierJPanel; CounterWindow extends it

78

CHAPTER 11. TESTING AND VERIFICATION

by adding a graphical interface for displaying and modifying the value of the counter,
and also by adding the methods of the Counter interface.

Results

This example shows how a user interface can be added transparently to a data class,
without modifying any of the class’s code. This separation of data and interface simplifies
programming, and corresponds to the Model-View-Controller (MVC) architecture. The
Model-View-Controller (MVC) architecture was introduced by the Smalltalk language
developers, for creating applications with user interfaces [35]. One aim of this design
pattern is to separate the information which is being manipulated (the ‘model’) from the
user’s ‘view’ of the data (typically within a window), and from the ‘controller’ (through
which the user manipulates the data). These three portions are essentially independent,

with only limited interactions between them [22, p. 626].

Transparently adding a graphical display not only simplifies debugging (since the graph-
ical class can stand in for the original in any situation); it also allows many different

visual representations (views) of the same object, in different parts of the screen.

An alternative approach would be to write a subclass of a particular class which imple-
ments the Counter interface, to act as its stand-in (and provide a graphical representa-
tion). However, this subclass could then interface to only that particular class, and not
to any other class that implements Counter. The advantage of the solution used in this

example is that it can display any Counter.

11.9 Distributed Processing
Aim

This experiment shows that distributed objects need not be simple data receptacles. It

demonstrates how a computation may be distributed across a group of FileServers.

Method

Wherever an instance of db.smartroom.server.debug.PrimeFinder is registered with
a FileServer, it starts an execution thread (of very low priority, so as not to impinge on

other processes) to calculate prime numbers.

79

CHAPTER 11. TESTING AND VERIFICATION

If the RemoteObject is being registered for the first time, a window is created. This
window displays the number of new prime numbers found, and the rate at which prime
numbers are being found. If it is a subsequent registration, communication is entered into
with the PrimeFinder at the home FileServer, which allocates blocks of prime numbers

to be computed, and collates results in its window.

To run this experiment using two computers, run ‘rmiregistry’ on computer XYZ.
Then ‘MakeServer.bat XYZ’ once on one computer and (optionally) once on another.

Then run ‘PrimeFinder.bat XYZ’ from anywhere.

Results

1. When MakeServer was run on two computers (Computer 1 and Computer 2), be-
fore PrimeFinder was run, the window shown below appeared on Computer 1,
counting up the number of work units performed in finding primes on both Com-

puter 1 and Computer 2.

E;_#', Computation results 1] .

125.88 work units (4.13/ms) performed by db.smartroom.zerver.FileServerimpl[Re
111.97 work units {3.58ims) performed by db.smartroom. server FileServerimpl_Stu
1B g [»
IWarning: Applet Window

The computers had processors of different speeds, which explains the different

average computation rates (in brackets). On Computer 1, the text output was

Have registered PrimeFinder@RemoteReference(0:1)

Duplicating object

FileServerLister: Ping received

Created duplicate on db.smartroom.server.FileServerImpl_Stub[RemoteStub
[ref: [endpoint:[137.158.135.197:2531] (remote),objID: [0]1]1]]

Created duplicate on db.smartroom.server.FileServerImpl_Stub[RemoteStub
[ref: [endpoint:[137.158.135.191:1053] (remote),objID: [6853172e:
da6cb782db:-8000, 01111

End of duplications

About to do computation

Finding primes

80

CHAPTER 11. TESTING AND VERIFICATION

On Computer 2, the output was

Have registered PrimeFinder@RemoteReference(0:1)
About to do computation

Finding primes

This shows that both computers were participating in the distributed computation.

2. When MakeServer was run on just one computer, the new window display was:

Eg;"; Computation results M=l g3

113.38 work units {4 46/m=) performed by db.smarroam.semver. FileServerlm
1] Al
i‘v\!aming: Applet Window

[»

3. Finally, when MakeServer was run twice on the same computer before
PrimeFinder, the output was:

Eg’% Computation results O] =]

114814 work units (3.37/ms) performed by db.smartroom.server FileSererlimpl]
3588 wark units {1.080ms) performed by db.smartroom semer FileServerlmpl_S
1] [»
IWarmng: Applet Window

In summary, when MakeServer is run on two computers, the rate at which prime numbers
are computed is double the rate when just one computer has a FileServer. Conversely,
when MakeServer is run twice on the same computer, the combined rate of computation

is the same as for a single server, since the servers must share a single processor.

This clearly demonstrates one of the advantages of distributed computing, and also

proves that the architecture developed can effectively use this mechanism.

81

CHAPTER 11. TESTING AND VERIFICATION

11.10 Conclusion

These examples demonstrate that this distributed object system can effectively resolve
many of the challenges of distributed systems, mentioned in part I. This chapter has
shown the creation, migration, and intercommunication of objects, and tested the archi-

tecture developed in chapter 10.

82

Chapter 12

Conclusion

The clearly specified object-oriented architecture, developed in this part, gives dis-
tributed objects the ability to control their own migration, enabling them to implement

sophisticated migration strategies.

Because a group of conventional objects can be treated as a single totally distributed

object, programming of distributed systems is greatly simplified.

The experiments prove that the implementation of the architecture works according to
its specification, and that the specification provides a useful environment for distributed
objects to inhabit. Finally, the experiments also serve as prototypes for further pro-
gramming in part IV, since they illustrate many of the essential strategies employed by
distributed objects.

83

Part 111

A Building Simulator

85

Chapter 13

Introduction

A Smart Building can demonstrate the usefulness of distributed objects in a real pattern
analysis situation. A simulated building is needed to provide a rich and powerful source
of data for this Smart Building.

The building simulator developed in this part enables complex behaviour to be simulated
with ease. Virtual cameras can observe this, and injected information into the Smart
Building, just as real cameras will do once a physical Smart Building has been built.
Complex interactions between objects are achieved using a flexible two-phase message
passing protocol, which allows potential actions within the building to be proposed and

amended, before they are allowed to occur.

Chapter 14 explains the need for a simulated building, and outlines how it models a
real building. Next, it identifies the primary participants in the simulated building, and
their roles. It also justifies the choice of a complex model for the simulation, as necessary
for realism and flexibility. Finally, chapter 15 shows how the building was implemented
using Java, highlighting the design considerations of the implementation, and showing

a sample run.

87

Chapter 14
Simulation of a Building

To demonstrate the feasibility of a ‘Smart Building’, a program was created in order
to simulate a building and its inhabitants. This program produces sample data for
testing how the Smart Building reconstructs what happens inside it. However, its use
extends beyond this, too; since the objects in the simulated building directly parallel
those contained in the real building, the simulated objects can be replaced directly with

their real equivalents when the real building is complete.

14.1 Overview

The simulated building consists of a collection of rooms, doors between rooms, obstacles,
cameras, and people with programmed behaviour. This can all be displayed graphically,
so that the activities within the room can be seen clearly. When a sensor in the simulated
building detects that something has happened, it communicates that message to the
appropriate FileServer. The RemoteObjects there then attempt to reconstruct what
happened. This is exactly the same as what a real sensor would do, when it detected a

change in its environment.

Inhabitants of the simulated building interact by broadcasting their intended actions to
all of the other inhabitants. Any inhabitant may decide to veto the action; if none does,
then the action is allowed to occur. This protocol enables complex behaviour to occur in
the simulated building. Since the inhabitants receive feedback from their actions, they
can use this information to change their plans if their intended actions are disallowed.
They can also observe the behaviour of the other objects, and use this to interact with

them. For example, two simulated people could decide to pause briefly if they met in a

89

CHAPTER 14. SIMULATION OF A BUILDING

room.

14.2 Structure of the Simulated Building

The simulated building provides an environment in which simulated objects can interact,
just as a distributed object system provides an environment for distributed objects.
Objects in the building interact by broadcasting messages to each other describing their
activities; therefore, the simulated building provides the mechanism for sending and

receiving these messages.

Central to the simulated building is an event passing system, through which all activities
in the building flow. This mechanism also allows activities to be proposed and amended
or vetoed, before they take effect. The users of this are the simulated objects which
send, receive and interpret these events, and it is they that represent the information

generated by the building.

The simulated building consists of four essential groups of objects:

1. ‘Events’
2. ‘Simulated Objects’
3. ‘Viewers’

4. ‘Coordinating Objects’

Within the simulated building, Events are used for all communications between Simu-
lated Objects. They might signify, for example, that movement is occurring or that time
is passing — or they could carry any other piece of information that other objects should

be made aware of. All Events are implemented as subclasses of class ActivityEvent.

Simulated Objects represent actual objects in the real world — both sensors, and ob-
jects that might interact with the sensors. Typical sensors could be cameras analysing
motion, face detection systems (which identify a person from a video camera), and swipe
card readers in doorways. Significant other simulated objects include virtual people (to
trigger the cameras) as well as those objects which interact with the people (such as
room boundaries and obstructions within a room). Simulated Objects are subclasses of

NamedObject, and implement ActivityListener.

90

CHAPTER 14. SIMULATION OF A BUILDING

Viewers create graphical representations of the Simulated Objects. This facilitates com-
parison between simulated behaviour and behaviour reconstructed by the Smart Build-
ing. Viewers can also graphically display those events which activate sensors (such as
movement), transparently overlaying a plan view of a room. Finally, Viewers can al-
low the user to interactively control Simulated Objects, with a mouse. All Viewers are

subclasses of java.awt.Component, and they typically implement java.util.Observer.

Coordinating Objects are responsible for ensuring that Events are sent to all Simulated
Objects, that Simulated Objects are allocated appropriate Viewers, and that Viewers are
associated with screen windows correctly. They include the Building simulator object,

and the controller of Views.

14.3 Justification of Complexity

It would certainly be simpler to test the Smart Building with a predefined sequence
of motion and face detection events instead. However, that approach imposes severe

limitations on the scope of the simulation:

Verification A predefined sequence of events must be generated and inspected man-
ually. With a sophisticated model, complex event sequences can be generated
automatically. Furthermore, these sequences can be shown graphically, to clarify

the meanings of the events.

Validation If events are generated manually, then only a few pre-defined scenarios will
be considered by the Smart Building system. This increases the risk that flaws in
the system will go undetected, until real sensors are attached. With an automatic
system, in contrast, many slightly varying scenarios can be used to test the system.
In addition, behaviour within the system can be specified at a much higher level

than with the manual system.

Realism A predefined model must be rewritten almost completely in order to refine
the models of the sensors within the building. With a more advanced simulation,
only the sensor modules must be rewritten; everything else can remain unchanged.
(For example, if it were decided that a real camera could see only part of a room,

it would be simple to implement a corresponding simulated camera.)

The sophisticated model can also prevent unrealistic scenarios from occurring —
for example, it can guarantee that people do not walk through desks or partitions

between offices — while the simple model offers no such sanity checks.

91

CHAPTER 14. SIMULATION OF A BUILDING

Extensibility The sophisticated building can be reconfigured easily, to contain new
objects or more people. In contrast, the simple model requires an entirely new

scenario to be devised.

It is essential for the simulation to be as realistic as possible, to simplify the transition
to a real building. Furthermore, an accurate simulation can be more convenient than a
real building, since sample data for a particular scenario can be produced automatically,

whenever it is needed.

The building simulator used in this project is indeed complex. However, this complexity

offers realism, extensibility and flexibility which could not otherwise be achieved.

14.4 Conclusion

In this chapter, we have developed a framework for a building simulation that will
allow application of the distributed system to a concrete problem — that of a Smart
Building. The complexity and realism of the simulation will verify the Smart Building

as a meaningful distributed pattern recognition problem.

92

Chapter 15

Implementing a Simulated Building

This chapter shows how a building simulator was implemented using Java, as a source
of data for a computerised Smart Building. The mechanisms which coordinate all of
the simulated actions in the building are defined, and the design considerations of this

particular implementation are explored.

15.1 Class Overview

The classes which make up the simulated building are spread across four packages.

db.smartroom.simulator contains the classes which describe the internal geometry of
the simulated building, and also the classes for each of the actual simulated objects
within the building.

db.smartroom.simulator.event provides classes and interfaces for dealing with the

activities which occur in the simulated building.

db.smartroom.simulator.viewer enables the activities within a simulated building to

be displayed and controlled graphically.
db.smartroom.simulator.debug contains classes for testing and demonstrating the op-

eration of the building simulator.

In package db.smartroom.simulator:

93

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

e Classes Point, Dimension and BoundingBox provide geometrical abstractions of
the three-dimensional space which constitutes the simulated building. These
classes make it simple, for example, to find the midpoint of a region in which
movement has taken place (a BoundingBox), or determine whether two movements

overlap.

e (Class NamedObject is a superclass for all inhabitants of the simulated building.
This is a convenience class, which enables objects to be identified by a name rather
than by a cryptic memory reference. Its subclasses include Room, Obstruction,
Person, Door and Camera objects within the simulated building. Since each ac-
tivity takes place within a Room, many of these objects reference their Room in the

simulated building,.

e Class Building operates a virtual building, and the chronological events within
that building. It is responsible for passing proposed activities to the inhabitants

of the simulated building, and collating the responses.

In package db.smartroom.simulator.event:

e Class ActivityEvent a superclass for all activities which can take place in the
simulated building. Activity subclasses include ClockTickEvent, MotionEvent

and ImpossibleEvent.

o Interface ActivityListener defines how inhabitants of the simulated building are

informed of new ActivityEvents.

e ActivityReplaceException is the exception which ActivityListeners throw to

prevent a proposed ActivityEvent from taking place.

In package db.smartroom.simulator.viewer:

e Class View projects three-dimensional objects (from package
db.smartroom.simulator) into two-dimensional Java graphics objects. This class

could implement any projection, to give plan or perspective views of a room.

e Class ViewController operates and manipulates a single View of the simulated
building. It is an extensible abstract factory [29, p. 87,91] which defines which

viewer object to associate with each object in the building.

94

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

e VisibleBuilding extends the Building class, to create a graphical display auto-
matically for each new building inhabitant. It can also support multiple simulta-

neous views of the building, using many ViewControllers.

o Classes ActivityViewer, ObstructionViewer, PersonViewer and RoomViewer
provide graphical representations of ActivityEvent, Obstruction, Person and
Room objects respectively. The PersonViewer class also allows the motion of a
person to be controlled by the user, by clicking the mouse on the image of the

person.

In package db.smartroom.simulator.debug:

e GeometryTest is a test suite for demonstrating that the geometry classes of the
simulated building perform correctly. This class uses the JUnit [36] testing frame-
work to automate these tests, so that they can be performed each time the code

is modified and recompiled.

e (Class TestBuildingViewer creates a simple two-roomed simulated building, with

two inhabitants, and runs it. Section 15.5 shows how to run this demonstration.

15.2 Operation of the Building

The operation of the building simulator is controlled by a single thread in class Building.
This thread is responsible for maintaining a central building clock, and for notifying

objects within the building whenever anything occurs.

Events are used to signal to objects in the building (called ActivityListeners) that some
activity has occurred, of which they might need to take note. Most events are issued in
two steps. When an event is to occur, the sendActivityEvent method of the building

class is called.

First, the building calls the vetoableActivity method of each ActivityListener. This
enables other listeners to be fore-warned about a potential activity, and to veto it if
necessary. Each other listener may also suggest a compromise replacement activity,
if it wants to. Then, if the activity is not vetoed or if consensus is reached about
a compromise, the activity is deemed to have occurred, and the activityOccurred
method of each ActivityListener is called by the building. If the activity is vetoed,

and no compromise could be reached, then no event occurs. In either case, the process

95

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

which attempted to produce the event is notified of the result: either the event which

occurred is returned, or a special event of type ImpossibleEvent signals a non-event.!

As a concrete example, assume that a Person object represents a virtual person walk-
ing within the virtual building. Now assume that the person intends to take a virtual
step forward. If there is no obstruction ahead, the step should be allowed to proceed.
However, if there is an obstruction, then the action should be replaced with a suit-
able substitute. In terms of the building simulator mechanism, the vetoableActivity
method of each ActivityListener within the building will be called by the Person ob-
ject. The obstruction (itself a listener within the building) learns of the proposed event.
If the event would result in the person overlapping the obstruction, then it should veto
the activity; otherwise, it should allow it to proceed. In this way, the system can be

prevented from entering into an impossible state.

This mechanism also facilitates more complex interactions between the denizens of the
virtual building. For example, when a virtual person walked to a door, this event would
be transmuted to teleport the person into the next room. (This is needed because the
rooms in the building are assumed to be independent spaces.) A more sophisticated
model could ensure that motions in one room would be seen by cameras in the next

room, only if the door connecting the rooms were open.

The suggested replacement actions are also tested for feasibility, before being allowed
to occur. For example, if a door were to suggest that a person’s movement should be
replaced by a teleportation to the next room, and there was already a person standing in
the doorway of the next room, then that person’s object would block the teleportation,
and both the replacement activity and the original activity would fail (unless another

substitute activity were suggested).

The exact protocol for choosing a suitable replacement event is given below.

1. Set bestEvt to the proposed ActivityEvent.

2. For each listener:

(a) Call vetoableActivity(bestEvt)

(b) If the listener throws a replacement event (other than ImpossibleEvent),

replace bestEvt with this new event.

The two-phase notification mechanism of this class extends the technique of the
java.beans.PropertyChangeEvent class of the Java 2 platform. This class has two listener in-
terfaces java.beans.VetoableChangelListener and java.beans.PropertyChangeListener and
exception java.beans.PropertyVetoException. These listeners allow the properties associated with
various Java beans to be constrained, since they can veto unacceptable property values.

96

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

3. After vetoableActivity has been called for all listeners, there are three possible

outcomes:

(a) If everyone agrees (throws no exception), then the action is approved — return
bestEvt to the caller.

(b) If everyone either agrees or throws ImpossibleEvent, then the action is dis-

allowed — return an ImpossibleEvent.

(c) If any listener has offered a replacement event, go back to step 2 (using the
replacement event). This repetition may occur at most n times, where n is

the number of listeners. Otherwise, return an ImpossibleEvent.

This protocol guarantees that each listener is given a chance to suggest a replacement

event.

15.3 Building Design Considerations

This building simulation makes assumptions that all activity within the building takes
place within a single thread, that each room has its own coordinate system, and that
events are essentially independent of each other. This section justifies these assumptions,

and explores their implications and the limitations which they impose on the simulation.

15.3.1 Single Threaded Operation

The operation of the building simulator is single threaded. This is desirable for several

reasons.

Display and Interaction It is useful for complete information to be available about
the building. It is needed by viewers which display the simulated building, for
comparison with the distributed reconstruction of the building. It also simplifies

interactive control of the virtual building.

Speed If the simulator were multi-threaded, or even itself distributed across many com-
puters, the interdependencies of the occupants would result in numerous locks and
inter-process synchronisations. This is especially true because each action in the
building potentially affects all of the other object within the building, especially

those within the same room. (If each simulated room were confined to a single

97

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

place, this restriction would not be as severe. Because the building simulator is
event driven, it would be possible for it to run in a distributed fashion, but it

would not be convenient.)

Simplicity Because there is only a single thread of execution, programming and debug-
ging of the simulator is simplified. This also makes it simpler to avoid inconsistent
states which might result if two actions were performed simultaneously, and elim-

inates deadlock issues.

Integrity The simulated building should remain independent from the distributed en-
gine attempting to reconstruct the activities within the building. Furthermore,
the simulated building should be simpler than the reconstructor; particularly, it
should not rely on the mechanisms which the reconstructor is testing — otherwise,
it may be impossible to distinguish flaws in the reconstructor from flaws in the

simulator.

15.3.2 Independent Coordinate Systems

A further assumption which is made in the implementation of the building simulator
is that each room has an independent coordinate system. Although this is not true in
physical terms, it eliminates the need for a global Cartesian coordinate frame. Further-
more, it allows a building to be designed as a combination of rooms, positioned relative
to each other by the placement of doors. This more accurately models the real building
which would eventually replace the simulator; in the real building too, it would be more
convenient to specify the rooms relative to each other, instead of as coordinates relative
to a global origin.?

This assumption also simplifies the design of objects within rooms; instead of scrutinising
all activities that occurred within the building, they could ignore all activities that
occurred in other rooms, and concentrate only on those within their room. Having self-
contained rooms does make creating doors between rooms more complicated — a person
must jump instantaneously from one room to the next. However, a door object can cause
a person to seem to be in two places at once, by creating phantom motion events on
the other side of the door from the person, and by preventing any other person from
walking through the door (or very near to it), while a person is standing in the doorway.

Section 15.4.3 contains more detail about how doors are implemented in the simulated

2In a real building, it is convenient to allow each camera to use its own coordinate scheme, and
separate the image analysis performed by the camera from the correlation of points from different
coordinate schemes.

98

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

building.

Finally, the assumption of independent coordinates has the further advantage that it
enables non-standard topologies to be programmed into the building simulator easily.
For example, a lift could be programmed as a special type of room, which sometimes

adjoins one room, and sometimes another.

15.3.3 First Order Event Model

Events in the system are assumed to be atomic and self-contained. In other words,
the simulated building does not allow for conditional event combinations. The only
exception to this rule is the fact that each event may be vetoed, or a replacement event

may be suggested, before the event is allowed to occur.

Secondly, the current design does not allow a new ActivityEvent to be sent from
within a call to vetoableActivity. Otherwise, it might be that the activity cur-
rently being vetted had already been given the stamp of approval by some of the
ActivityListeners. If the new ActivityEvent caused the system state to change,
then the vetted activity might no longer be legal, yet it could nevertheless occur, since

the affected ActivityListeners would not necessarily be consulted again.

In essence, such a call would contradict the premise of a single thread of opera-
tion in the building. It is essential that the system state does not change within a
call to vetoableActivity. However, sending a new ActivityEvent within a call to
activityOccurred does not cause the same inconsistencies, and is therefore allowed. In
addition, calling firevetoableActivity from within vetoableActivity is also allowed,
since the new call will not cause the system state to change. (This corollary is used by
door objects, to allow a person to appear to be in many places at once — the details of

this are in section 15.4.3.)

Another issue with the current consensus model is that it is non-deterministic, in that
the order in which ActivityListeners are polled for their views on a particular event is
not pre-specified. In certain cases, this may result in a sub-optimal replacement activity,
or even in an action being vetoed by all listeners, when a compromise could possibly
have been reached [37].

There are two reasons why this is not a serious limitation. Firstly, there are few in-
teractions which affect many objects simultaneously within a building, so the order of

polling is seldom an issue. The second consideration is this: even if two different possible

99

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

outcomes were discovered, making a choice between them would require a mechanism

for comparing their relative worth, which is as difficult a problem again.

The only way to overcome these shortcomings would be to use a far more sophisticated
event model. This could allow generalised event roll-back — to enable nested events and
contingent event sequences. In this way, compound, complex actions could be produced,

such as conjunctions or disjunctions of other actions.

The building simulator design is chosen from the continuum of designs between a simple,
predefined sequence of events and a complex and completely general model of the build-
ing. The compromise used in this simulation maintains as simple a model as possible
for the building simulator, but still allows interactions between objects in the building,

and guarantees that impossible states do not occur.

15.4 Simulated Objects

This section describes and justifies how the Simulated Objects in the virtual building
were implemented. Each of these objects implements the ActivityListener interface;
thus each object must implement vetoableActivity and activityOccurred methods,

to enable it to interact with the other objects in the building.

15.4.1 Obstructions

Obstructions represent those regions of a room where no movement may occur. Ob-
jects such as desks and office partitions can be modelled effectively in this way. The
behaviour is implemented by Java class Obstruction; if any MotionEvent which would
intersect the obstruction is proposed, the vetoableActivity method will veto it. (The
activityOccurred method does nothing, since the only way to reverse inappropriate

activities is through the vetoableActivity method.)

15.4.2 People

Within the simulated building, people are just the same as moving obstructions. As
a result, class Person extends class Obstruction. When other objects are moving,
the Person object behaves in the same way as its superclass. However, whenever time
passes and a ClockTickEvent activity occurs, the Person object generates its own ac-

tivity, signalling its intention to move to a new location. While this is happening, the

100

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

vetoableActivity method changes its behaviour to accept all movements — otherwise
the activity would be vetoed by the very Person object which proposed it in the first

place.

If the motion is allowed to occur, then the position of the Person object is updated, and

the object reverts to its earlier behaviour.

15.4.3 Doors

Doors have very special behaviour, which effectively allows them to connect the different
spaces of two rooms together. The doorway behaves as a tiny interstitial space between
two rooms, so that a virtual person standing in the doorway seems to be in two places

at once.

If a person walks close to a doorway, they are automatically transported into the door-
way’s space. This prevents them from being stopped from moving when they reach the
edge of the room overlapped by the doorway. All movements and potential movements
that occur in the doorway’s space are mirrored into the two rooms on either side of the
doorway. This ensures that a person moving in the doorway does not bump into objects

on either side of the door.

When a person in the doorway reaches the edge of the door’s space, they are again
transported into the appropriate room space instead, and the doorway plays no further

role.

15.4.4 Virtual Sensors

Virtual sensors correspond directly to sensors in the real world. As a result, the Smart
Building can be tested with the output of virtual sensors; later, the virtual sensors can
be replaced with real sensors. Ideally, these virtual sensors should behave as realistically
as possible, to smooth this transition, and also to ensure that the simulated results are

reliable.

However, this transition need not be made instantaneously; it is quite possible to in-
tersperse both real and simulated objects. Thus, a single real ‘Smart Room’ could be
treated as part of a virtual Smart Building, or extra virtual people could be included
in a real room, in order to test the system’s behaviour beyond the limits of existing

hardware.

101

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

In this simulation, the primary virtual sensor is a Camera object. This object detects all
MotionEvents within its Room. A certain, configurable percentage of these are randomly
selected and faithfully recorded, and injected into the Smart Building, while the rest are
assumed to be failed detections. Similarly, spurious motion artefacts are occasionally
produced, at a configurable average rate, and also injected into the Smart Building.
Finally, the virtual cameras add random jitter to the boundaries of the detected move-

ment.

This model is intended to approximate the behaviour of a motion detector connected to
a real camera within a room. A more advanced simulation of a camera could take into
account that two people moving might cause the camera to register only a single, large

motion, instead of two separate motions.

15.5 Sample Run

To demonstrate the simulated building, run the batch file
‘TestSmallVisibleBuilding.bat’ in the db/smartroom/simulator/debug direc-
tory. This creates a simple simulated building, consisting of two room connected
by a door. The building also contains two virtual people, ‘jill’ and ‘fred’, with

pre-programmed paths.

Single Room Demonstration

This section shows the movements of one person in a single room, in figure 15.1.

1. A simple room is created, shown as a window. The room contains one person —

the rectangle labelled ‘fred’ — and also an obstruction in the lower right corner.

2. If the user clicks on the ‘fred’ rectangle, a new window appears for controlling

Fred’s movement.

3. If the east control button is pressed, Fred begins to move east in the simulated
room. The shaded trail (coloured blue) is drawn by the ActivityViewer class,
to show the sequence of MotionEvent objects generated over the last few clock
intervals. The head of the trail is light red, showing Fred’s most recently proposed

movement.

4. If the south control is pressed, Fred begins to move south.

102

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

5. Fred moves south until he eventually reaches the obstruction, which prevents him

from moving any further.

[%5 room1 =] Ega room1 =]

oo

E:% Control fred M=l E3
{HORTH)

(WEST) || STOP || (EAST)

(SOUTH)
(a) A simple room (b) Controlling Fred (c) Fred moves east
Egamom1 = [=] B3 Egamom'l - O] x|

(d) Fred moves south (e) The obstruction stops
Fred

Figure 15.1: The movements of one person in a simulated room

Double Room Demonstration

Figure 15.2 shows the simulated building created by TestSmallVisibleBuilding, and

illustrates how doors operate.

1. There are two rooms, and a door which connects them. In the screen snapshot,
they are shown as three overlapping windows, with the door window placed in front
of the two room windows. In the first sub-figure, Jill is moving in a north-easterly

direction, while Fred is moving eastwards.

103

CHAPTER 15. IMPLEMENTING A SIMULATED BUILDING

2. In the second sub-figure, Jill is standing in the doorway, but MotionEvent shadows
can be seen in both rooms, demonstrating how doors replicate motions into other

spaces.
3. Finally, Jill is in the second room, showing doors’ ability to transport virtual people

between different co-ordinate spaces.

oo ol| (& L=k

E3Doon2 - O] x| [EiDoor12 = O] [EiDoor2 = 1O] x|
— " | ————

ST

(a) Two simulated rooms (b) Jill walks through the (¢) Jill moves into room 2
doorway

Figure 15.2: A simulated building

15.6 Conclusion

An accurate building simulation can be achieved only by faithfully modelling all of the
relevant objects in a building, rather than simulating only the people. By simulating
objects such as furniture and cameras too, the simulation can be made far more realistic

and more flexible than a simple simulation.

This realism is essential for developing a Smart Building that can operate with real

cameras, as well as simulated sensors.

104

Chapter 16

Conclusion

Careful design of the simulated building provides a model for the Smart Building that is
easily applicable to the real world. The complex building simulator parallels an actual
office environment, including simulated objects such as people and doors. The simulation
is simple to run on a single computer, the rooms have been made independent of each

other, and objects within the rooms can interact to produce complex behaviour.

In the following part, we use the simulation as a source of information for the Smart
Building.

105

Part IV

The Smart Building

107

Chapter 17

Introduction

A Smart Building is a stringent test of the power of distributed pattern analysis. Part IV
of this dissertation demonstrates the strength of the architecture which was developed

in part IT in a real application — a computerised Smart Building.

Chapter 18 introduces the concept of a Smart Building, and explains why a Smart
Building is a good test for a distributed object system. Chapter 19 shows how a Smart
Building can be implemented using the distributed object architecture of part II. Chap-
ter 20 proposes applications and enhancements for future work on this architecture, for

commercial adaptation.

Chapter 21 concludes this dissertation, with a summary of the costs and benefits of using

a distributed object architecture for distributed pattern analysis.

109

Chapter 18
Definition of a Smart Building

A ‘Smart Building’ is a computerised building which is aware of what is happening inside
it. It can follow the movements of the people in the building as they walk from room to

room. It can also use this information to assist the inhabitants, for example:

1. On the factory floor, it could sound a warning if someone was in danger from

moving machinery.

2. In the office, it could automatically turn on the lights as someone entered a room,

and it could forward telephone calls to the phone nearest to a person.

3. In a hospital, it could monitor a ward full of babies, and alert the hospital staff to
distressed behaviour. In addition, it could follow the movements of the hospital

staff, and locate them immediately whenever they were needed.

4. The house of a disabled or infirm person could act as a ‘virtual butler’ [38] to

enable the person to live independently, without full-time nursing support.

A Smart Building constructs its model of reality using the sensors at its disposal, such
as cameras and microphones. This model may include physical information, such as
the locations and movements of the people in each room. It might also include other
information, such as the expected intentions of a person. Many objects in this model
would correspond directly to objects in the real world; this would enable the Smart

Building to make predictions or deductions about what is happening inside it.

Finally, a Smart Building provides feedback, either directly or indirectly, to its inhab-

itants. Direct feedback could include controlling lights, or warning a factory worker of

111

CHAPTER 18. DEFINITION OF A SMART BUILDING

danger. An example of indirect feedback would be informing a nurse in the hospital
that a particular baby was crying, or automatically identifying which babies were crying

excessively.

The rooms of a Smart Building are largely independent of each other, since movement
in one room seldom has any effect on the objects in other rooms. This makes it ideal
to implement a Smart Building using a distributed object system, with one computer
for each room. The information that must traverse rooms can then be encapsulated
into totally distributed objects, while the bulk of the pattern analysis can be performed

locally within each room.

The objects on each room’s computer would usually correspond to the objects present in
the real room. Thus the computer model can almost exactly parallel the real world. Since
objects on the same computer can interact more easily than objects on widely separated
computers, this model accurately duplicates the relationships between the real objects.
Similarly, when a real person walks from one room to another in the building, the object

representing that person will also migrate from the one computer to the other.

112

Chapter 19
Implementation

A Smart Building illustrates the usefulness of distributed pattern recognition. Since
most activity within a particular room of the building does not affect the other rooms,
each room can have its own computer performing most of its data analysis. The rooms
then need to communicate with each other only when a person moves between rooms.

This can all be implemented easily using a distributed object architecture.

19.1 Overview

As people move within a building, they cause cameras to detect motion. This chapter
describes Smart Building software which uses only these movements to reconstruct the
behaviour of people within the building. As people move from room to room, the
software uses distributed computing techniques to follow their movements, and share

this information between the computers affected.

The Smart Building performs its analysis by stages, as follows:

1. When a camera detects movement, it creates a Movement RemoteObject on the

FileServer associated with the camera’s room.

2. A PathController object consumes these Movements, and attempts to string them

together into Path objects, each consisting of a sequence of movements.

(a) A collection of independent Path objects is known as a Scenario. Within the

paths of a particular Scenario, each Movement object occurs exactly once.

113

CHAPTER 19. IMPLEMENTATION

(b) The PathController maintains a list of the most likely Scenarios, and when
a new movement occurs, it adds it to each Scenario in turn, to determine
a new set of most likely Scenarios. The most likely Scenario is the one
which best represents the detected Movements, and satisfies the constraints
of a Path.

(¢) When a Path in the best reconstruction has been unchanged for a certain
length of time, it is declared complete, and will not be changed again. At
this point, the PathController registers it with the local FileServer, which

makes the contents of the Path public information.

3. A PathMatcher consumes Path objects from each local FileServer, and pairs to-
gether those Paths which begin and end near to each other. It can pair Paths from

different rooms, using extra information about the relative locations of rooms.

(a) There is one PathMatcher object on each FileServer associated with a room.
However, all of these objects are actually representatives of a single truly
distributed object, spread across the entire building. These PathMatchers

use an internal communication system to coordinate their information [31].

(b) When a PathMatcher decides that two paths match, it creates a SimpleMatch
RemoteObject on the local FileServer of the one path, and a duplicate of it

on the FileServer associated with the other path.

4. A viewer class displays the activities of the PathController and PathMatcher in

a window.

19.2 Applications of Distributed Objects

Distributed objects are used at various stages of the Smart Building reconstruction
process. First, Movement objects are simple, immutable distributed objects. They are
assembled on one computer — the computer which runs the simulated building — then
they are created as distributed objects on the computer associated with their room
of origin. Since Movements are RemoteObjects, they can be accessed remotely, from

another computer, if their details are needed.

Next, the PathController uses FileServer services to consume these Movements, and

produce Paths from them.

PathMatchers are far more sophisticated distributed objects. In this implementation,

each PathMatcher has information about the adjacent rooms and their relative positions.

114

CHAPTER 19. IMPLEMENTATION

When a Path is discovered which begins near a room boundary, the PathMatchers of
the two rooms communicate, to discover whether a person has moved from one room
to the next. In the same way, a PathMatcher communicates with itself to discover
correspondences between movements within a room. Thus the PathMatcher provides a
conceptually consistent interface for finding and pairing adjacent paths, whether they are
both in the same room, or in separate rooms. Whenever a path association is discovered,
the PathMatcher creates a new SimpleMatch RemoteObject, to provide other objects

with the new information.

This modular design makes its intermediate results public, using FileServers. This has

a number of advantages:

1. The phases of this implementation are essentially independent of each other; they
communicate their information indirectly, by creating objects on the local File-
Server. As a result, one portion can be modified or rewritten entirely, without

changing the other parts of the system.

2. Intermediate results are available for other processes to use. For example, the re-
construction viewer listens to the creation of new files, and draws its reconstruction

based on the objects created on the local FileServer.

3. Extra data consumers can be added dynamically. Furthermore, different recon-
struction methods can be used simultaneously with the same data, for comparison

purposes.

4. Separation into modules simplifies the overall design, by using a number of small

independent modules, rather than a single huge processing scheme.

Without distributed objects, this simple and elegant communication between computers
would be impossible to achieve. Similarly, file creation events make it possible to com-
pletely separate producers and consumers of information. In a single-computer system,
this is not an issue, since the ultimate consumer can be responsible for setting up all
of the information producers. However, in a distributed system, it is often impracti-
cal to reboot computers and start processes in a predefined sequence — it is far more

convenient to be able to start processes independently, in any order.

115

CHAPTER 19. IMPLEMENTATION

19.3 Flow of Information

This section outlines the flow of information within the Smart Building, from its source
at the sensors, all the way to the objects representing people in the building and their

movements.

19.3.1 Movement Objects

When a camera detects movement, it creates a Movement object on one of the FileServers
which constitute the Smart Building. This is how information enters the building, and

it is at this point that it becomes available for reconstruction purposes.

However, the simulated cameras are designed with imperfections; they occasionally fail
to register a movement which did occur, and they sometimes register spurious movements
when nothing actually happened. This makes the task of reconstructing behaviour from

movements more difficult, and more realistic.

Fach Movement has accessor methods to identify its location and its position. The
location of a movement identifies the coordinate space in which the movement occurred,
while the position indicates the bounds of the motion, within the coordinate space. A
measure of the ‘distance’ between two movements can also be obtained. This enables
movements from different coordinate spaces to be compared to each other, in later phases
of the analysis. In fact, this is the only essential feature of the Movement interface: an
ability to measure the distance between any two movements. Thus movements form a

metric space [39].1

The assumption of independent coordinate spaces is similar to that of section 15.3.2, in
the simulated building. It enables cameras to perform their computations independently
of their positions within the building. There is also an implicit assumption that the
preprocessing for extracting regions of movement is completed before the movement is
injected into the building, and that this preprocessing does not rely on any other objects
in the Smart Building. (In other words, the preprocessing can take place independently

of extra information, but extra information may be used if it is available.)

In summary, Movement objects represent brief motions within the Smart Building, and

also the distances between them.

1This distance measure should satisfy the requirements of a metric space — classes which implement
Movement agree to satisfy this condition.

116

CHAPTER 19. IMPLEMENTATION

19.3.2 Paths and Scenarios

There are two interfaces which are widely used at various levels in the simulated building;:
the Path and Scenario interfaces. Paths are sequences of movements, while Scenarios

are collections of Paths.

The Path Interface

A Path represents a sequence of events within the Smart Building. It also provides
a measure of the ‘value’ of the Path — this measures the relative likelihood that this
sequence of events results from a single source (such as a person walking), and not from

random coincidence of events.

For example, a sequence of Movement events, all very near to each other, occurring within
a limited time frame, would have a high value, since this could easily represent a person
working in a room. In contrast, Movements jumping rapidly back and forth around the
room should have a low value; they might be noise, or they might be more valuable as

two separate Paths.

The Smart Building attempts to assemble events into Paths with the highest total value
possible.

The Scenario Interface

A Scenario is a collection of independent Paths. No event is repeated between the Paths
of a Scenario, thus a Scenario represents a group of Paths that might have occurred
in parallel with each other. Like Paths, Scenarios also have a value function associated
with them; Scenarios with higher values should represent more ordered scenarios than

those of low value.

The Smart Building uses Scenarios in order to decide how best to allocate events to
Paths. Scenarios guarantee that the Smart Building will not make impossible recon-
structions, since there is no overlap of events within a Scenario. By maintaining a
number of Scenarios, the Smart Building can consider many possible reconstructions
simultaneously, before it decides to commit to a particular view of what happened in
the building.

New events can be added to any Path within the Scenario, and the value of the Scenario

which would be produced can be computed for comparison purposes, in order to decide

117

CHAPTER 19. IMPLEMENTATION

with which Path each new event should be associated.

Events and Paths can also be removed from a Scenario; for example, when it has been
decided that a certain Path definitely occurred, that Path should be removed from all
Scenarios (since it is no longer a basis for uncertainty). This may significantly change
the values of other Paths in other Scenarios, since they may have been using the events
of the Path to be removed, as part of smaller, independent Paths. This ensures that all

of the Scenarios being considered consist of the same set of events.

19.3.3 Controller Objects

The Smart Building tries to combine elementary pieces of information, such as
Movements, into more complex information, such as Paths. In order to do this, it
must be aware of the creation of new motion events, and decide how they would best be
combined into Paths. PathController and PathMatcher objects do just this.

PathController

There is a PathController object located on each FileServer (or ‘Place’) where there is
a camera. This controller listens for the creation of new Movement objects in the system.
In a simple case, the controller collects only those events which are completely contained

within a certain space.

The PathController typically maintains a number of Scenarios, reflecting likely com-
binations of Movement into Paths. Whenever a new movement occurs, each Path in each
Scenario is tested with the movement, to see where it should be allocated. (The new

movement may otherwise be best as the start of a new Path.)

When the controller decides that a certain Path is complete, it removes the Path from
all of its Scenarios, and registers that Path on the local FileServer. This makes the

Path available for other objects to view and use.

PathMatcher

A PathMatcher maintains a distributed network of Paths, and attempts to coordinate
and combine them to form longer Paths. These links between paths are represented
using SimpleMatch objects. The PathMatcher is a truly distributed RemoteObject,

118

CHAPTER 19. IMPLEMENTATION

with a representative on every FileServer where there is a camera. The PathMatcher

becomes aware of new Paths by listening to each FileServer, for new Path registrations.

Just as Movements are the source objects for the PathController, Paths are the sources
objects for the PathMatcher.

In a simple system, these two controllers are independent stages in the flow of infor-
mation through the Smart Building. This implies a tradeoff between the quality of the
reconstructed view of the building, and the lag in producing it — the PathMatcher

cannot begin its work until it receives information from the PathController.

A more complicated design would require these controllers to be interconnected, granting
the PathMatcher access to the incomplete analyses of the PathController. The advan-
tage of this is that reconstructions are available immediately an event occurs, making
the reconstruction process very responsive. However, the costs are that this approach
requires more computational resources than the simple system, it requires more binding
between PathController and PathMatcher, and the intermediate results are subject to

change.

19.3.4 Summary

Information enters the Smart Building from cameras as Movement objects. The
PathController combines Movements within each space into Paths, using Scenarios
to decide which paths are best. The PathMatcher then produces SimpleMatches con-

necting Paths, which can span different rooms.

Figure 19.1 shows a conceptual UML diagram of the correlations between these classes.

listens to creation

Movement
. *
listens - ;
Path Scenario
B
! 1
I creates
PathMatcher E----- PathController
creates
N
SimpleMatch

Figure 19.1: Conceptual class diagram for the Smart Building

119

CHAPTER 19. IMPLEMENTATION

19.4 Segmenting Movements into Paths

The task of the Smart Building described in this section is to reconstruct the move-
ments of people from a sequence of motion detections. With complete information, each
movement can simply be associated with the nearest movement from the previous time
instant. However, this will not work if the information is incomplete (the camera is not

perfect), or if people are entering or leaving the room, or stop moving for a short while.

This section describes how the suitability of a reconstruction can be quantified, to pro-
duce sensible reconstructions, even with inaccurate information. Ideally, the value of the
reconstruction would be a true Bayesian probability measure. It would be the absolute
probability that this is the correct reconstruction, given the measured movement data.
This could be computed if the probabilistic mapping from movement paths to motion
detections were known, and the absolute probabilities of movement detections and path

configurations were also available.

Simpler measures of path values are sufficient to produce good path reconstructions in
the Smart Building implemented here. Nevertheless, there are certain issues which must

be considered in producing these reconstructions.

19.4.1 The Problem of Singletons

Singletons are paths containing just one motion detection. Although certain actions
in the Smart Building will produce only a single motion detection, this occurs only
occasionally. More often, a singleton will result from a spurious motion detection (false
positive), or from a movement being allocated to a new path, when it should have been

appended to an existing path.

When new paths begin, however, they must also start as singletons. Furthermore, when
a movement occurs, it is impossible to decide whether it would ultimately remain a
singleton, if it were to be made into a new path, or whether other movements would be

associated with the path later. The difficulty is the lack of future information.

A distinction must be made between complete and incomplete paths. Complete paths do
not change, while data may still be added to incomplete paths. If a complete path and an

incomplete path contain the same movements, they may still have different probabilities.

For example, a complete singleton path shows that just one movement occurred, and was

not followed by any other movements. An incomplete singleton path shows that a single

120

CHAPTER 19. IMPLEMENTATION

movement has occurred, but that there is no information about subsequent movements.
In other words, there is a significant difference between knowing that a movement has
not occurred, and not knowing anything about that movement. This information must
be used in determining the likelihood of various scenarios of allocating movements to

paths.

Another way of seeing this is to observe that paths contain not only events, but also

non-events: if events are not contained in a path, this is significant information.

19.4.2 Evaluating a Scenario

The PathController tries to determine the best possible reconstruction scenario, which
describes the movements within the building. In order to do this, it needs a way of

valuing a scenario, to compare it with other scenarios.

The information available to the PathController consists of the movements detected
by the cameras in a room (M), and the current set of scenarios (Ri, Rz, ... Ry).
The PathController can measure the suitability of a reconstructed scenario R; by
calculating the probability that it is the best of the available scenarios, namely

P(R;|M, Reconstructionis Ry or Ryor ... R,). Now, using Bayes’ formula,

P(M, R1 or... Rn|RfL) X P(Rz)
ZZ:l P(M, R1 or... Rank) X P(Rk)
P(M|R;) x P(R;)
>k P(M|Ry) x P(Ry)

P(Ri|M7R1 OT...Rn) =

The probability P(M |R;) represents the probability that the movements M would have
resulted from the collections of paths R;. P(R;) represents the absolute probability of
scenario R; arising — in other words, it represents the prior probability of the particular
paths contained in R; occurring. This is an infinitesimal number, in absolute terms,
since there are so many scenarios that could possibly occur. However, the P(R;) terms
can be replaced with relative probabilities, since the scaling factor between absolute and

relative probability cancels out in the formula above.

For a given collection of scenarios Ri, Ra, ... R,, the denominator term in the equa-
tion above does not change, so it can be ignored for the purposes of ranking scenarios
according to their applicability. Furthermore, if the paths of actions that caused the

movements within the building were independent of each other, then the probability of

121

CHAPTER 19. IMPLEMENTATION

the reconstruction P(R;) would be the product of the probabilities of the Paths. In addi-
tion, if each of the movements in M is represented exactly once in each scenario R;, then
the term P(M|R;) can be disregarded for a first approximation, since all reconstructions

will then fit the data reasonably well.

That is how the SimpleScenario class operates; the scenario computes the product of

the values of its individual paths, and presents that as its total value.

19.4.3 A Simple Example of Probability Calculation

The following simple example illustrates how probabilities can be calculated in a real
situation, to decide on possible reconstructions. In this example, movement events are
received as the result of movements within a building. The following assumptions are

made about the detected movements, and the paths which produced them:

1. It is assumed that the movement events are time-stamped when they are received,
2. Reconstructed paths must consist of at least two movements,

3. The movements in a path are consecutive in time — one per time unit,

4. The movements contained in a path are detected perfectly, and

5. There are no spurious movements.

Determining the Validity of Paths

It is convenient to be able to perform reconstructions iteratively, successively improving
the reconstructions over time as more data is received. However, this requires us to be
able to consider partially reconstructed paths, as well as complete ones, in our analysis.
To this end, the following requirements determine when a path is valid and when it is

invalid.

1. For a valid complete path (one to which no further movements will be added)

(a) All movements must be consecutive, i.e. every time slot must be occupied

(b) The path length must be at least 2

2. For a valid incomplete path (to which more movements may be added)

122

CHAPTER 19. IMPLEMENTATION

(a) All movements must be consecutive
(b) The latest movement in the path must be time stamped with the current time

(c) There is no length limitation, since movements could still be added to an

incomplete path, to make a complete one

These descriptions can be combined into a single compound description; any path is
valid if and only if:

1. All movements are consecutive

2. Either (path length > 1) or (path time stamp = last movement’s time stamp)
For notational convenience, a path may be described by a list of u time-stamped move-
ments mymy ... m,, and a time-stamp 7 for the path, and written as Path(m;my ... m,,
t=7). The time-stamp of a movement mj is written as t(mg). In symbols,
Path(mymy ... m,, t=7) is valid iff :

1. t(mp41) = t(mg) + 1 for all &

2. (u> 1)V (8(m,) = 7)

The probability that a path p is valid can then be written as P(p), with P(p) = 1 if the
path is valid and P(p) = 0 if the path is invalid.

A scenario is a list of paths. A scenario is valid iff all of its constituent paths are valid.

If scenario s consists of paths pi1,po,...p, then
n
P(s) = P(p1,p2,-.-pa) = [P&
k=1
This agrees with the probability computation at the end of section 19.4.2.

A Sample Reconstruction

Using the assumptions above, possible scenarios can be reconstructed from the following

sample data, in which four movements are received over five time periods: movement a is

123

CHAPTER 19. IMPLEMENTATION

received when time t=1, b when t=2, ¢ at t=3, and d at t=4. When t=>5, no movement
is detected.

At each time interval, the available information is the current time, the set of motions
detected thus far, and the possible scenarios produced during the previous period. By
combining the new events with the old scenarios in every way possible, new scenarios

are produced, and tested for validity.

e When t=0:

1. No movements have yet been detected

2. The set of potential scenarios is empty.
e When t=1:

1. Detected movements = {a}
2. Potential scenarios:

— pi1=Path(a, t=1) — which is possible, by the assumptions above
e When t=2:

1. Detected movements = {a,b}
2. Potential scenarios:

— paa1=Path(a, t=2) and pep; =Path(b, t=2) — impossible, since P(p2q1) =
0 so P(p2a1,p261) = 0. Since this scenario is impossible, it is ignored in

the next time interval.

— pop=Path(ab, t=2) — possible, since P(pgp) =1
e When t=3:

1. Detected movements = {a,b,c}

2. Potential scenarios:
— Path(ab, t=3) + Path(c, t=3) — possible
— Path(abc, t=3) — possible

e When t—4:

1. Detected movements = {a,b,c,d}

2. Potential scenarios:

124

CHAPTER 19. IMPLEMENTATION

Path(ab, t=4) + Path(c, t=4) + Path(d, t=4) — impossible
Path(abd, t=4) + Path(c, t=4) — impossible

Path(ab, t=4) + Path(cd, t=4) — possible
(
(

— Path(abc, t=4) + Path(d, t=4) — possible
Path(abcd, t=4) — possible

e When t=5:

1. Detected movements = {a,b,c,d}
2. Potential scenarios:

— Path(ab, t=>5) + Path(cd, t=5) — possible
— Path(abc, t=5) + Path(d, t=5) — impossible
— Path(abced, t=5) — possible

In conclusion, there are therefore two possible scenarios which are consistent with the
detected events. Either there was one long path containing all four movements (abcd),

or there were two short paths consisting of two movements each (ab and cd).

The simple model above cannot determine which of the possible scenarios is more likely
to be correct. However, it does demonstrate how a probabilistic approach can be used

to decide how to combine events into sensible reconstructions.

19.5 Implementation Details

The concepts developed above were used to implement a Smart Building, which re-
ceived its input data from the simulated building of part III. The Movement and Path
interfaces were implemented by classes SimpleMovement and SimplePath in package
db.smartroom.building.simple. This package also includes a SimplePathController
and a SimplePathMatcher, which together correlate movements into paths, and match

paths with each other.

19.5.1 Values of SimplePaths

This section describes the calculation which is used to determine the value of SimplePath
objects in the Smart Building. A SimplePath represents a sequence of movements, made

by one person, within a single space, such as a room.

125

CHAPTER 19. IMPLEMENTATION

The PathController uses path values to decide which reconstructions are best. High
values represent good reconstructions, while low values represent bad ones. For

SimplePaths, the following assumptions are made:

1. There is a maximum displacement between two consecutive movements. This
is because there is a real maximum speed at which people can move through a
building. For this illustration, that maximum speed is assumed to be 2m/s, a

brisk walking speed.

2. There is a maximum time delay between consecutive movements on a path. After
this time delay has elapsed, the path is considered complete, and adding new
movements to the path will give a new path of probability 0. Here, the maximum
delay is 4 detection periods. This is designed to avoid losing track of a path because
of false negative camera detections. When a person stops moving and then starts

again, that should produce two separate paths.

3. Completed singleton paths are assigned a value of 0.001. They usually result from

false positive camera detections.

4. Other paths are assigned a value equal to the reciprocal of the average step-wise
speed of movement, or 100, whichever is less. 2m/s average net speed gives a value

of 0.5s/m; half that speed gives a value of 1.

19.5.2 Implementing a PathMatcher

Class SimplePathMatcher keeps track of the correlations between Paths, whether they

are on the same computer, or on separate computers.

Detection

When the SimplePathMatcher is first created and registered with a FileServer, it dupli-
cates itself to all other FileServers in the Smart Building. Then, whenever a new Path
object is created anywhere in the building, the local SimplePathMatcher representative
decides which rooms are near to the start of the path, and informs their matchers of the
path.

126

CHAPTER 19. IMPLEMENTATION
Correlation

When a SimplePathMatcher is informed that a path started near its space (using its
communicate method), it compares the endpoints of the paths which originated in its
space to the starting point of the new path. If the points are close enough to each other,
in space and time, then the matcher creates a SimpleMatch object on both its local
FileServer and the new path’s FileServer, to inform other objects that the two paths are
linked.

The SimplePathMatcher also uses the method above to match two paths which are in
the same space. This shows how distributed objects can be used for communication

across computers, and within the same computer, easily and flexibly.

19.6 A Sample Run

The Smart Building’s operation is demonstrated in this section, using a screen capture
from a sample run. In this demonstration, three computers cooperate to simulate and

reconstruct actions in a Smart Building.

The demonstration creates a simulated building consisting of two rooms, like the simu-
lation of section 15.5. The two inhabitants, Jill and Fred, have preprogrammed paths of
action, although their actions can also be controlled directly by a person, by clicking on
them using a mouse. Fred begins in room 1, moves east for 10 time units, south for 20,
then stops. Jill also begins in room 1, but moves north-north-east for 30 units, through
the doorway into the second room. There, she walks east for 10 units and pauses for
10 clock ticks. Finally, she moves south and south-west for 30 units, back into room 1,

before stopping.

Figure 19.2, on page 130, shows a screen snapshot of the simulated building and snap-
shots of the reconstructions of the two rooms. The snapshots were taken just before
the end of the activities described above. More screen shots of the Smart Building are

included in Appendix B.

Simulated Building

The simulation snapshot shows both Fred and Jill in room 1 (the lower room); sec-

tion 15.5 contains a detailed explanation of the simulation screen display.

127

CHAPTER 19. IMPLEMENTATION

Motion Reconstruction

The reconstruction windows show complete, reconstructed paths as light lines, and in-
complete, tentative paths as dark lines. Furthermore, when two paths have been matched
with each other, the end of the first path is shown as a light circle, and the start of the

second path as a dark circle.

The reconstruction of room 1 shows that Fred made one continuous movement, walking
east first and then south. The reconstructed path is jagged because the simulated camera
is designed to introduce noise into its detected movements, and also occasionally to fail

to detect movements.

The reconstruction also shows that Jill walked north-east until she left room 1, and that

she re-entered the room walking south-south-east.

Furthermore, there is a spot near the middle of the reconstruction, representing a false
positive detection introduced by the cameras. Correctly, this was not associated with
either Fred or Jill’s paths.

Room 2’s reconstruction shows that Jill walked north and east. She then paused (the

path terminates) before moving south.

Path Matching

There is a light circle in room 1’s reconstruction where Jill left the room, and a dark
circle where she entered room 2. This shows that the two separate paths have been
associated with each other correctly, by the SimplePathMatcher. There are also two

circle where Jill paused in room 2, where two paths were again joined.

There is no connection between the final path of room 2 and the tentative path of room 1.
This is because the tentative path has not yet been registered with the local FileServer,
and it may still be removed if it is superseded by better reconstruction of the activity in
the building.

Running the Demonstration

This section gives instructions for running the demonstration on three different comput-

ers:

128

CHAPTER 19. IMPLEMENTATION

1. Set up two room computers, for reconstructions: on computer XYZ, run
rmiregistry. Then run the batch file ‘MakeRoomServer.bat XYZ’' in the
db/smartroom/building/debug directory. On a second computer, again run
‘MakeRoomServer.bat XYZ’.

2. Run the building simulator: on a third computer, run
‘TestSmallSimpleBuilding.bat XYZ’. This will create a simulated building

on this computer, and use the other two computers to perform reconstructions.

It is also possible to run the demonstration on one computer, using three Java Virtual
Machines. Since the JVM’s are separate, they are independent, and their only commu-
nication is through standard networking protocols — from their perspective, they might
as well all be on different computers. This can be done in the same way as above, or by
running the batch file ‘TestSmall.bat’

19.7 Conclusion

A Smart Building is an environment which inevitably spans many computers. This
chapter has shown that a distributed object system can actually exploit the separation

of computers in a Smart Building, to reconstruct movements in the building.

The distributed object system explicitly uses the spatial localisation of movements within
each room, to perform local reconstructions first. Communication between computers
is then needed only when paths are found to end close to doors to other rooms. Truly
distributed objects simplify the design of distributed systems, by moving communication

and distribution considerations into the objects responsible for the communication.

The Smart Building demonstrates how reconstruction tasks can be shared between com-

puters, eliminating the need for a central, controlling computer.

129

CHAPTER 19. IMPLEMENTATION

(b) Computer 2

(a) Computer 1

(c) Computer 3

Figure 19.2: The Smart Building simulation and reconstructions

130

Chapter 20

Possible Enhancements and Further

Applications

This chapter describes additional enhancements which could be made to the distributed

object system and the Smart Building, to make it suitable for commercial use.

20.1 The Distributed Object System

The distributed object system could be extended to enable inactive distributed objects
to be stored on disk. This would enable the distributed object system to be shut down
and restarted without losing its inventory of objects. It would also allow the system to
operate for months at a time, without exhausting the computers’ memory resources, as

long as there is enough disk space available.

To do this, a mechanism would be needed to flag inactive distributed objects. In Java,
the automatic garbage collection system could be used to do this, by ensuring that File-
Servers contain only weak references to their RemoteObjects, and that other distributed

objects hold only RemoteReferences, not direct references to local RemoteObjects.

Furthermore, widely distributed RemoteObjects could be designed with a protocol for
deleting inactive representatives, after centralising their data. This would reduce the
storage requirements for inactive objects, and also facilitate reactivation of these objects,

since each inactive object would be stored only at its home location.
Distributed objects could also be upgraded to take into account network failures, by

131

CHAPTER 20. POSSIBLE ENHANCEMENTS AND FURTHER APPLICATIONS

delaying the communication of information until network connections are re-established.

Finally, the cost of communication between distributed objects could be modelled ex-
plicitly [18], to optimise the use of the available communication bandwidth. Such a
system would possibly allow RemoteObjects to specify Quality of Service requirements,
such as those used in Asynchronous Transfer Mode (ATM) networks [40].

20.2 The Building Simulation

The building simulation currently does not allow simulated people to walk into each
other — they are modelled as rectangular, moving obstructions which cannot overlap.
This model could be relaxed to allow two people to move closer together, by marking
only a limited central area of each person’s region of movement as actually occupied. The
behaviour of simulated people could also be improved, to allow goal-directed behaviour

instead of pre-specified or user controlled movements.

The camera model would then need to be redesigned, to produce a single movement
event when two virtual people overlap. In addition, three-dimensional objects could also
be extended and abstracted, from simple rectangular bounding boxes to arbitrary solids,

to better model people and other objects.

20.3 The Smart Building

Path reconstructions could be made more realistic, by using Bayesian probabilities to
accurately model the behaviour of real cameras, and using this information to determine
path probabilities rigorously. If people can overlap in front of a camera, then provision
must also be made to reconstruct overlapping movement paths — now a single movement

can be allocated to two paths.

Paths in the Smart Building could also be associated with real people, by integrating
a face detection system and a distributed database of known faces. This could also be

achieved by observing other characteristics of the people in the building, such as height.

Finally, the Smart Building software could be used to model a real building, by replacing

the building simulation with real cameras.

132

Chapter 21

Conclusions

Distributed systems enable a group of computers to work together towards a common
goal. This dissertation has shown the development of a distributed object architecture,
which enables a network of smaller computers to perform the task of a central computer

at a far lower cost.

This architecture is most useful in situations where data can be processed near to its
source. The system can then take advantage of the geographical proximity of interrelated
data sources, allowing them to inform each other of their results. Many real-time control
systems belong to this category, and they can also benefit from the other advantages of
distributed systems: greatly enhanced fault tolerance, and a reduction in lag between

the production and processing of data, especially in very large networks.

The object-oriented design of the architecture allows both active agents and passive data
to interact as peers in the system. Since each distributed object is able to define its own
migration strategy, novel distribution techniques are made possible. Furthermore, the
technique of ‘truly distributed objects’ enables a group of distributed objects on different
computers to act together, as if they were a single object. This allows a single task to

be shared by many computers elegantly.

A ‘Smart Building’ is a rigorous test of the benefits of distributed pattern recognition.
This computerised building has one computer in each room, and it uses the distributed
object architecture to enable them to cooperate in interpreting the behaviour of people
in the building.

This shows that distributed pattern analysis is both powerful and convenient, when

implemented using a distributed object system.

133

Bibliography

[1]

[2]

3]

4]

[5]

(6]

7]

[8]

[9]

[10]

[11]

J. P. Morrill, “Distributed recognition of patterns in time series data,” Communi-
cations of the ACM, vol. 41, pp. 45-51, May 1998.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, 1986.

T. Cornell, “Coursenotes: Introduction to prolog (prolog-einfithrung).” Postscript
file, email cornell@sfs.nphil.uni-tuebingen.de, Mar. 9, 1998.

J. Wielemaker, “Swi-prolog 2.9.9.” ftp://swi.psy.uva.nl/pub/SWI-Prolog/,
Mar. 1998.

K.-M. Lam and H. Yan, “An analytic-to-holistic approach for face recognition based
on a single frontal view,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, pp. 673-686, July 1998.

M. Bichsel, “Analyzing a scene’s picture set under varying lighting,” Computer
Vision and Image Understanding, vol. 71, pp. 271-280, Sept. 1998.

S. M. Weiss and C. A. Kulikowski, Computer Systems That Learn. San Francisco,
California: Morgan Kaufmann Publishers, Inc., 1991.

R. O. Duda and P. E. Hart, Pattern classification and scene analysis. New York:
Wiley-Interscience, 1973.

C. M. Bishop, Neural networks for pattern recognition. Oxford: Clarendon, 1995.

H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 23+,
Jan. 1998.

S. Haykin, Neural Networks: a comprehensive foundation. Prentice Hall, 1999.

135

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Koza, Genetic Programming — On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Pro-

cessing of Uncertainty. Plenum Press, 1988.

A. G. Skarmeta and H. M. Barbera, “Fuzzy logic based intelligent agents for reactive
navigation in autonomous systems,” in Fifth International Conference on Fuzzy
Theory and Technology (FTE&T’97), (Durham, USA), pp. 168-171, Mar. 1997.

R. E. Neapolitan, Probabilistic Reasoning in Expert Systems. John Wiley & Sons
Inc., New York, 1990.

G. Wagner, Foundations of knowledge systems : with applications to databases and

agents. Kluwer Academic Publishers, 1998.

J. Earman, Bayes or bust : a critical examination of Bayesian confirmation theory.
Cambridge, Mass: MIT Press, 1992.

J. Kim and D. J. Lilja, “Performance-based path determination for interprocessor
communication in distributed computing systems,” IEEFE Transactions on Parallel
and Distributed Systems, vol. 10, pp. 316-327, Mar. 1999.

A. Silberschatz and P. B. Galvin, Operating System Concepts. Addison-Wesley
Publishing Company, 1994.

F. S. Wong and M. R. Ito, “Design and evaluation of the event-driven computer,”
IEE Proceedings, Part E, vol. 131, pp. 209-222, Nov. 1984.

J. Yang and A. K. Mok, “Symbolic model checking for event-driven real-time
systems,” ACM Transactions on Programming Languages and Systems, vol. 19,
pp- 386-412, Mar. 1997.

B. Eckel, Thinking in Java. Electronically distributed at
http://www.EckelObjects. com, 1997.

A. Dogac, C. Dengi, and M. T. Oszu, “Distributed object computing platforms,”
Communications of the ACM, vol. 41, pp. 95-103, Sept. 1998.

Microsoft, “DCOM architecture: White paper.” http://www.microsoft.com/,
1998.

S. Purao, H. Jain, and D. Nazareth, “Effective distribution of object-oriented ap-
plications,” Communications of the ACM, vol. 41, pp. 100-108, Aug. 1998.

136

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

BIBLIOGRAPHY

J. M. Hyde and M. R. Cutkosky, “A phase management framework for event-driven
dextrous manipulation,” IEEE Transactions on Robotics and Automation, vol. 14,
pp- 978-985, Dec. 1998.

A. Geist, A. Beguelin, et al., PVM: Parallel Virtual Machine: A Users’ Guide
and Tutorial for Networked Parallel Computing. MIT Press, 1994. Electronically
distributed at http://www.epm.ornl.gov/pvm/.

OMG (Object Management Group), “Mobile agent specification.” Electronically
distributed at http://www.omg.org, July 31, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Addison-
Wesley, 1994.

J. Baumann, F. Hohl, K. Rothermel, and M. Strafser, “Mole - concepts of a mobile
agent system.” Universitdt Stuttgart Fakultdt Informatik, Aug. 1997.

E. A. Kendall, P. V. M. Krishna, C. V. Pathak, and C. B. Suresh, “Patterns of
intelligent and mobile agents,” in AGENTS ’98. Proceedings of the second inter-
national conference on Autonomous agents, (Minneapolis, 1998), pp. 92-99, ACM
Press, May 1998.

T.-Y. Yen and W. Wolf, “Performance estimation for real-time distributed em-
bedded systems,” IFEE Transactions on Parallel and Distributed Systems, vol. 9,
pp- 1125-1136, Nov. 1998.

M. Campione, K. Walrath, et al., “The Java Tutorial: Security in JDK 1.2.”
http://java.sun.com/docs/books/tutorial/securityl.2/index.html, July
1999.

S. Srinivasan and N. K. Jha, “Safety and reliability driven task allocation in dis-
tributed systems,” IEEFE Transactions on Parallel and Distributed Systems, vol. 10,
pp- 238-250, Mar. 1999.

G. E. Krasner and S. T. Pope, “A cookbook for using the model view controller
user interface paradigm in Smalltalk—-80,” Journal of Object-Oriented Programming,
vol. 1, pp. 2649, Aug. 1988.

E. Gamma and K. Beck, “JUnit 2.1: Test infected: Programmers love writing tests.”

ftp://www.armaties.com/TestingFramework/JUnit/, 1998.

A. D. Stoyen, T. J. Marlowe, M. F. Younis, and P. V. Petrov, “A development
environment for complex distributed real-time applications,” IEFEE Transactions

on Software Engineering, vol. 25, pp. 50-74, Jan. 1999.

137

BIBLIOGRAPHY

[38] A.P.Pentland, “Smart rooms and Pfinder,” Scientific American, vol. 274, pp. 6872,
Apr. 1996.

[39] J. R. Giles, Introduction to the analysis of metric spaces. Cambridge: Cambridge
University Press, 1987.

[40] J.-F. Frigon, “Dynamic reservation tdma medium access control protocol for wireless

atm networks.” Masters thesis, University of British Columbia, 1998.

138

Appendix A

Programmer’s Reference for the
Distributed Object System

This appendix contains a programmer’s reference for essential Java classes and inter-
faces, for the distributed object system developed in part II. Interface FileServer,
interface RemoteObject and class RemoteReference are all contained in package

db.smartroom.server.

Interface FileServer

public interface FileServer

extends java.rmi.Remote, java.io.Serializable

A FileServer stores a list of RemoteObjects, which are local to the current Java Virtual
Machine. FileServers allow objects to be created, accessed, listed and deleted, both
remotely and locally. FileServers provide the ‘places’ where RemoteObjects can exist

and interact.

See Also: RemoteObject, FileServerLister

Method Summary

e void addFileListener(FileListener 1)
Adds a FileListener to the FileServer.

139

APPENDIX A. PROGRAMMER’S REFERENCE FOR THE DISTRIBUTED
OBJECT SYSTEM

e java.io.Serializable communicate(RemoteReference obj, java.io.Serializable
data)

Send a message to a RemoteObject on this FileServer.

e RemoteReference create(RemoteObject obj)

Create (and keep) a copy of an object on this FileServer.

e java.util.Set listFiles()

Return a list of (RemoteReferences to) all of the files stored on this FileServer.

e RemoteObject open(Remotelbject obj)
Return the FileServer’s copy of the object obj, namely x satisfying x.equals(obj).

e RemoteObject open(RemoteReference obj)

Return the FileServer’s copy of an object with the same home as obj.

e boolean remove(RemoteReference o)

Removes a file from the given FileServer (optional operation).

e void removeFileListener(FileListener 1)

Removes a FileListener from the FileServer.

Interface RemoteObject

public interface RemoteObject

extends java.io.Serializable

The RemoteObject interface describes objects which can be can be created on File-

Servers, and specifies the legal interactions for those objects.

RemoteObjects should allow themselves to be completely serialized, until they are first
Registered on a file server. Thereafter, they should never again allow themselves to be
registered, except under the same name as before, and they should serialize alternative

representations of themselves.

Method Summary

e java.io.Serializable communicate(java.io.Serializable info)

Enables messages to be sent to a particular object.

140

APPENDIX A. PROGRAMMER’S REFERENCE FOR THE DISTRIBUTED
OBJECT SYSTEM

e boolean equals(java.lang.Object obj)
RemoteObjects should correctly reimplement the equals() and hashCode() meth-
ods of the Object class, to correctly equate any two objects with a common "home’,

and also equate a RemoteObject with its corresponding RemoteReference

e RemoteReference getHome()

Discover object’s home location int hashCode()

e RemoteObject register(RemoteReference home)

Register is called whenever a RemoteObject is about to be stored on a FileServer.

Class RemoteReference

public class RemoteReference

extends java.lang.Object implements java.io.Serializable

RemoteReferences are passive links to RemoteObjects. They enable an object to be
located uniquely by name, from anywhere. They should seldom be used explicitly,

except within the implementations of RemoteObjects.

A FileServer acts as the home base for the object, so that the object can always be

located from its RemoteReference.

Constructor Summary

e RemoteReference(FileServer theServer, java.lang.String objName)

Constructs a new RemoteReference.

Method Summary

e java.io.Serializable communicate(java.io.Serializable data)

Sends a message to the original object, at its home location

e boolean equals(java.lang.Object obj)

Two references are equal only if they refer to the same object on the same server.

e FileServer getFileServer()

Returns the file server on which this object was originally created.

141

APPENDIX A. PROGRAMMER’S REFERENCE FOR THE DISTRIBUTED
OBJECT SYSTEM

e int hashCode()
The hash-table function is rewritten, too, so that two objects that agree with

equals() will also agree with their hash table entries

e RemoteObject open()

Opens the original object, from its home location

e java.lang.String toString()

Returns a string representation of this RemoteReference.

142

Appendix B

Screen Captures from a Smart
Building

This appendix illustrates typical screen displays produced by the Smart Building. These
images were all generated with the program TestSmallSimpleBuilding in package

db.smartroom.building.debug, used in section 19.6.

The left half of each diagram shows a plan view of the simulated building. The top right
window shows a reconstruction of the upper room of the simulation, and the bottom

right window shows the lower room’s reconstruction.

Figures B.1 through B.5 show snapshots of the building at time t=0, t=15, t=35, t=>55
and t=80 respectively.

In the simulation, Fred moves east from t=0 until t=10, south until t=30, and then

stops moving.

Jill moves north-north-east from t=0 until t=30, east until t=40, pauses until t=>50,

then finally south and south-west until t=80, before stopping.

143

APPENDIX B. SCREEN CAPTURES FROM A SMART BUILDING

Figure B.1: The Smart Building at time t=0

144

APPENDIX B. SCREEN CAPTURES FROM A SMART BUILDING

Figure B.2: The Smart Building at time t=15

145

APPENDIX B. SCREEN CAPTURES FROM A SMART BUILDING

Figure B.3: The Smart Building at time t=35

146

APPENDIX B. SCREEN CAPTURES FROM A SMART BUILDING

Figure B.4: The Smart Building at time t=>55

147

APPENDIX B. SCREEN CAPTURES FROM A SMART BUILDING

Figure B.5: The Smart Building at time t=80

148

